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Abstract—Large Hadron Collider (LHC) produces collision
data at 100 PB/year which needs to be stored and analyzed for
high energy physics (HEP) theories. We reconsider the design
choices of HEP data centers and evaluate different upgrade
options to improve their analysis capacity.

Results show that computational storage to be the cost-
effective and power-efficient upgrade option. Computational
disks in the storage cluster deliver a 9.3-fold speedup for
Higgs Boson analysis. This exceeds the speedup from all
other upgrades considered (faster network: 100 to 1000 Gbps,
upgrade from HDDs to SSDs).
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I. INTRODUCTION

Detecting collision events from 8 different experiments
(e.g. ATLAS, CMS, LHCb, ALICE) around the ring, the
Large Hadron Collider (LHC) produces a huge amount of
data. Despite the filtering from purposely-built real-time
triggering mechanisms, the collected events still mount up
to 100PB per year for physicists around the world to analyze
and test different theories of high-energy physics (HEP).

CERN and HEP community built a tiered grid [1] around
the globe to meet the storage and analysis demands. Lim-
ited by cost considerations, the conventional wisdom on
developing the HEP data centers is to buy disks to host
the continuously growing data. By developing a parametric
and detailed model of a tier-2 data center, which is the
workhorse for analysis workloads for each university or
research institute, we carefully evaluate several different
upgrade options to match the increasing analysis capacity
demand, especially for the luminosity increase [2] (and
hence the collision rate and HEP data collection) after the
long shutdown of LHC.

II. METHODOLOGY

Model. We build the performance model after the
UChicago tier-2 data center(named as UChicagoT2), which
is shown in Figure 1 with different configurations. The data
center has one compute cluster ‘UCT2’ and one storage
cluster ‘DCache’ which manages the collision event data
with DCache [3]. Hard disks are modeled to have 200 MB/s
read bandwidth and 100 MB/s write bandwidth.
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Workload. Higgs boson analysis with 47TB CMS dataset
is used as the workload. It independently maps two steps
of computation to each collision event. First, apply filters
to muons, global muons, electrons tracks. Second, calculate
statistics on filtered muons, global muons, electrons tracks in
the event for potential Higgs bosons. This parallel mapping
are amenable to acceleration [4], [5]. The processing of
each file (∼3GB, ∼10000 events) CMS dataset is treated
as independent jobs. Each job is of the following stages:

• Stage 1: In-storage computation at DCache cluster
• Stage 2: Data staging: DCache → UCT2
• Stage 3: In-storage computation at UCT2 cluster
• Stage 4: Higgs boson stats compute at UCT2 cluster
• Stage 5: Store back results: UCT2 → DCache

Stage 1 and Stage 3 are optional and only applicable
when computational storage [6] upgrade is considered. The
performance number to model stage 4 is extrapolated from
running Higgs Boson analysis on one actual UCT2 machine.

Approach. Above configurations and performance num-
bers model the current UChicago T2 data center, which is
the baseline. We further consider different upgrades:

• Backbone networks from 100 Gbps to 1000 Gbps.
• Replacing HDDs with SSDs in a cluster.
• Adding computational storage [6] in DCache cluster.

A C++ simulator implements the performance model
with task-level granularity, where each stage for a job is
instantiated as a task. It simulates task progress under the
modeled customizable resource properties and produce the
application performance measured in latency.

Figure 1. UChicagoT2 data center modeling



Figure 2. Performance and resource utilization in baseline

Figure 3. Upgrade backbone network: 100 Gbps to 1000 Gbps

Figure 4. 1000 Gbps backbone network + UCT2 SSDs

Figure 5. Computational storage in DCache cluster

III. EXPERIMENTS

All the figures plot utilization of different resources in
UChicagoT2 and follow the same organization. We include
a legend for the resources with notable utilization under each
plot. On top of each plot, there are marks showing the period
when tasks of each stage are being processed.

Baseline. Figure 2 details its Higgs boson analysis perfor-
mance. Each line plots the utilization of a specific resource
over time. ‘3896 sec’ is the overall analysis latency. DCache
outbound 100 Gbps link and UCT2 inbound 100 Gbps link
were almost always at nearly 100% utilization, performing
Stage-2 tasks of transferring data from DCache to UCT2.

Improve backbone network from 100GbE to 1000GbE.
To address the performance bottlenecks in baseline, back-
bone network is upgraded. As shown in Figure 3, the
upgrade increases analysis performance by 1.3x. Backbone
network (DCache outbound and UCT2 inbound) utilization
drop significantly, while UCT2 disks become the system
bottleneck. This led to the stall of Stage 4 tasks that read
events from UCT2 disks while Stage 2 tasks are intensively
writing to UCT2 disks during the DCache to UCT2 event
file transfer (see stage duration at the top of the figure).

Further replace HDDs with SSDs in UCT2. On top
of the network upgrade, we consider replacing HDDs with
SSDs for UCT2 cluster targeting its disks bottleneck. SSDs
are modeled as 4 GB/s for read and 2 GB/s for write, as
opposed to 200 MB/s and 100 MB/s for HDDs as discussed
in Section II. This led to a further 6.4x latency reduction, and
8.6x from baseline, as shown in Figure 4. The performance
bottleneck circles back to backbone networks.

Employ computational storage. We consider a non-
conventional upgrade directly from baseline: adding in-
storage computation capability to hard disks in DCache clus-
ter to perform column-selecting (slimming) such that only
selected fields in each tuple needed for statistics calculation
are transferred to UCT2 cluster. Each computational storage
disk embeds an in-order single-scalar core modeled as an
Ibex core [7] to compute on top of the data streams from
storage media. Spike [8] is used to simulate column-select
tasks and emit execution traces for performance analysis.
Figure 5 shows a 9.3x speedup in this case. Because data
is selectively transferred out from DCache storage, the
bandwidth requirement on the later resources (backbone
networks, UCT2 disks, UCT2 compute) is largely reduced.
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