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Abstract—Large Hadron Collider(LHC) produces collision
data at 100 PB/year which needs to be stored and analyzed for
high energy physics(HEP) theories. We reconsider the design
choices of HEP data centers and evaluate different upgrade
options to improve their analysis capacity.

Results show that computational storage is the most cost-
effective and power-efficient upgrade option. By employing com-
putational storage disks in the storage cluster, Higgs Boson
analysis, HEP’s stellar analysis workload, enjoys the speedup
of 9.3x, exceeding the speedup delivered by more expansive
upgrades options such as improving backbone network from 100
Gbps to 1000 Gbps and switching from hard disks to SSDs in
compute cluster.

Index Terms—High energy physics, OLAP, Computational
storage, RISC-V

I. INTRODUCTION

Detecting collision events from 8 different experiments
(e.g. ATLAS, CMS, LHCb, ALICE) around the ring, the
Large Hadron Collider(LHC) produces a huge amount of data.
Despite the filtering from purposely-built real-time triggering
mechanisms, the collected events still mount up to 100PB
per year for physicists around the world to analyze and test
different theories of high-energy physics(HEP). Limited by
cost considerations, the conventional wisdom on developing
the HEP data centers is to buy disks to host the continuously
growing data. As one would imagine, the growing analysis
capacity requirement is overlooked.

Now is a good time to rethink these design choices. LHC
is in the long shutdown period to upgrade for the High
Luminosity LHC project that will increase the luminosity(and
hence the collision rate and HEP data collection) by a factor
of 10. Much greater analysis capacity will be needed once the
LHC resumes its operation.

In this work, we aim to break the chain of conventional
wisdom. By developing a parametric and detailed model of a
tier-2 data center, the workhorse building block in the HEP
grid, we carefully evaluate several different upgrade options
to match the increasing analysis capacity demand.

Specific contributions include:

• Detailed modeling on HEP data center resources enables
parametric performance analysis for HEP data centers.

• Identification and exemplification of employing compu-
tational storage that brings the highest analytical capacity
improvement.

• A consistent analytical model from conventional bot-
tleneck analysis that produces clear evidence for why
computational storage is a better solution.

We will first provide backgrounds on HEP data centers
and analysis workload in Section II. Our modeling for Tier-
2 HEP data sites and experiment methodology is introduced
in Section III. The experiments evaluating different upgrading
options are detailed in Section IV. The analytical performance
model along with cost considerations is discussed in Section
V. We discuss related work in Section VI.

II. BACKGROUND

A. High energy physics data centers

To store and process the enormous amount of data (∼ 100
PB each year) from the different experiment apparatus from
the large hadron collider (LHC) and enable collaboration of
scientists around the globe, CERN builds a grid [1] connecting
more than one hundred computing centers in more than 40
countries. These data centers are organized in tiers:

• Tier-0: CERN LHC producing data of interesting colli-
sion events and storing them (EB-level) in tape archives.

• Tier-1: Main data centers at major participating countries,
storing backup copies of collision data (10 - 100 PB) and
handle collision event reconstruction and recalibration.

• Tier-2: Community data centers inside research institutes
and universities, sharing the grid responsibility of repli-
cating collision events and handling analysis requests.
Storing PB-level data.

Collision event data are distributed and replicated across the
grid through distribution policies for data integrity purposes.
To reduce the data movement and improve system efficiency,
computations are usually shipped to the data center site
holding the corresponding data copy.

B. Higgs boson analysis

In this study, we use an HEP stellar workload: Higgs boson
analysis [2] on public CMS collision data [3] to understand the
performance of the level 2 data centers. Higgs boson analysis
map two steps of computation to each collision event:



Fig. 1: Computational storage device

• Apply filters to muons, global muons, electrons tracks.
• Calculate statistics on filtered muons, global muons,

electrons tracks in the event for potential Higgs bosons.
The most important computation characteristics are that

the computation mapped to each event is independent from
the other event. This signifies the huge parallelism available.
The public CMS dataset contains 250 million collision events
totaling 78TB (47TB real events are used in the study, there
are also 31TB monte-carlo-simulated events) stored in roughly
25000 files, which corresponds to at least 25000-way of
parallelism, let along we can further subdivide the event files.
This level of parallelism exposes the opportunity of low-
latency analysis which would greatly reduce the turn-around
time and improve the analysis capacity in tier-2 data centers.

C. Computational storage

The storage industry has seen rapid increases in storage
device capacity and bandwidth. It shifts bottlenecks in the
modern data center architecture to the CPU and interconnects
and draws attention to the old question on how to best divide
compute and storage dating back to the 1990s.

Computational storage addresses this changing balance. By
adding computation capabilities inside the storage devices
as in Figure 1, computing can be shifted closer to storage,
reducing data movement. Further, computational storage also
allows computation to scale with storage bandwidth.

III. PERFORMANCE MODELING

A. Model for a tier-2 data center

We build the performance model for a tier-2 data center
after the UChicago tier-2 data center(named as UChicagoT2),
which is shown in Figure 2.

The data center has one compute cluster named ‘UCT2’
and one storage cluster named ‘DCache’ which as the name
suggested, manages the collision event data with DCache [4].

The model for UCT2 compute cluster is composed of 256
compute nodes with 32 cores and a 1TB hard disk in each
node. Each UCT2 node is connected to the top-level router of
the cluster with a 10-Gbps Ethernet link.

The model for DCache storage cluster is composed of 30
compute nodes, each node equipping with 40 1TB hard disks.
Each DCache node is connected to the cluster top-level router
with a full-duplex 10-Gbps Ethernet link.

UCT2 and DCache cluster are connected to each other
as well as the WAN network with a full-duplex 100-Gbps
Ethernet link. Hard disks are modeled to have 200 MB/s

Fig. 2: UChicagoT2 data center modeling

Fig. 3: Higgs boson analysis mapping to the modeled
UChicagoT2 data center

read bandwidth and 100 MB/s write bandwidth. As a result,
with the current baseline configuration, the UCT2 compute
cluster and DCache storage cluster respectively possesses 410
Gbps and 1920 Gbps disk read bandwidth in total. These
aggregate numbers are meaningful later in the analytic system
performance model.

B. Workload

Higgs boson analysis with 47TB CMS data is used as the
workload. We analyzed the computational structure and high
parallelism of the Higgs boson analysis in Section II-B. Here
we discuss how the Higgs boson analysis is implemented in
the modeled UChicagoT2 cluster in Figure 3.

As discussed in Section II-A, the computation are shipped
to the data center holding the corresponding data to avoid
excessive network transfer. Thus, it is assumed that 47 TB
CMS data is hosted in the DCache cluster in our modeled
tier-2 data center.

The Higgs boson analysis workload is carried out in a multi-
stage fashion in our modeled tier-2 data center, The processing
of each file ( 3GB, 10000 events) in the public CMS dataset
is treated as independent jobs. Each job is composed of the
following stages:

• Stage 1: In-storage computation at DCache cluster
• Stage 2: Data staging: DCache → UCT2
• Stage 3: In-storage computation at UCT2 cluster
• Stage 4: Higgs boson Statistics compute at UCT2 cluster
• Stage 5: Store back results: UCT2 → DCache



Stage 1 and Stage 3 are optional and only applicable when
computational storage is equipped at the DCache or UCT2
cluster. We measure the application-dependent throughput of
Stage 4 on one of the UCT2 machines. We warm up the OS
page cache by reading the file five times to get rid of the
disk performance influence and measure the real computation
throughput.

C. Approach

The configurations and performance numbers discussed
above model the current UChicago T2 data center, which is
the baseline. We further consider different upgrades:

• Improving backbone networks speed from 100 Gbps to
1000 Gbps.

• Replacing hard disks with solid-state drives in either
UCT2 and DCache cluster or both.

• Adding computational storage.

We evaluate analysis performance under baseline and with
different upgrades to determine the most effective way to
improve the analysis capacity of a tier-2 data center.

Considering the analysis workload is parallel as discussed
in Section II-B, we employ a throughput-oriented discrete
event performance model. A C++ simulator implements the
above performance model with task-level granularity, where
each stage for a job is instantiated as a task. It simulates task
progress under the customizable resource properties specified
in the performance model and produce the application perfor-
mance measured in overall latency.

D. Metric

We measure performance with the metric ‘latency’ of Higgs
boson analysis that analyzes 47TB collision events. We track
the system performance and bottleneck through ‘utilization’
of different kinds of resources. The utilization is generally de-
fined as the ratio between aggregate(across nodes) throughput
and aggregate bandwidth capacity for the network links and
storage devices. For the computing devices, the utilization is
directly the average CPU utilization across cores and nodes.

For the cost, we measure silicon area as well as power
consumption. Intuitively, the best upgrades are most cost-
efficient and energy-efficient.

IV. EXPERIMENTS

We first evaluate performance of the current UChicago tier-
2 data center. And then we assess the upgrade options of
increasing the available disk bandwidth by switching from
hard disks to SSDs, upgrading network with higher bandwidth
capacity for the backbone network connecting the UCT2 com-
pute cluster and the DCache storage cluster, and employing
computational storage at either UCT2 or DCache cluster. From
there, we analyze the Higgs boson analysis performance of
each upgrade and determine which one works the best to
improve the analysis capacity.

Fig. 4: Shared legend for different resources. DCache and
UCT2 differ in linestyle for the same type of resource.

Fig. 5: Performance and resource utilization in baseline

Fig. 6: Upgrade backbone network: 100 Gbps to 1000 Gbps

Fig. 7: 1000 Gbps backbone network + UCT2 SSDs

Fig. 8: Computational storage in DCache



A. Baseline

Almost all the figures plot the utilization of different re-
sources described in Section III-A in UChicagoT2 and follow
the same organization. The figures all use the same legend
shown in Figure 4. We will still include a legend for the
resources with notable utilization under each plot for easier
identification of the highly utilized resources. On top of each
plot, there are marks shown the period when tasks of each
stage are being processed.

The configuration of different components in the baseline
model is defined in Section III-A. Figure 5 details its Higgs
boson analysis performance. Each line plots the utilization of
a specific resource over time. The number in the shaded box
just below the x-axis (i.e. 3896 sec) is the overall latency of
the analysis. As shown in the legend and the plot, DCache
outbound 100 Gbps link and UCT2 inbound 100 Gbps link
were almost always at nearly 100% utilization, performing
Stage-2 tasks of transferring data from DCache to UCT2.
These two resources are the performance bottleneck in the
baseline.

B. Improving backbone network from 100 Gbps to 1000 Gbps

We consider upgrading the backbone network, i.e., up-
grading DCache cluster inbound/outbound links and UCT2
cluster inbound/outbound links from 100 Gbps to 1000 Gbps,
to address the aforementioned performance bottlenecks. The
performance and utilization of Higgs boson analysis on the
upgraded UChicagoT2 data center are shown in Figure 6. The
upgrade increases analysis performance by 1.3x. Backbone
network (DCache outbound and UCT2 inbound) utilization
drop significantly, while UCT2 disks become the system
bottleneck. This led to the stall of Stage 4 tasks that read
events from UCT2 disks while Stage 2 tasks are intensively
writing to UCT2 disks during the DCache to UCT2 event file
transfer (see stage duration at the top of the figure).

C. Further replacing HDDs with SSDs in UCT2

On top of the network upgrade, we further consider replaces
HDDs with SSDs for UCT2 cluster as its disks were the
performance bottleneck. SSDs are modeled as 4 GB/s for read
and 2 GB/s for write, as opposed to 200 MB/s and 100 MB/s
for HDDs as discussed in Section III-A. This led to a further
6.4x latency reduction, and 8.6x from baseline, as shown in
Figure 7. The system performance bottleneck circles back
to backbone networks as both DCache outbound and UCT2
inbound utilization is at nearly 100% for most of the analysis.

D. Employing computational storage

We consider a non-conventional upgrade to the UChicagoT2
data center directly from baseline: adding storage computation
capability to hard disks in DCache cluster. Column selecting
(slimming) are offloaded to computational storage such that
only selected fields in each data tuple needed for later statistics
calculation are transferred to UCT2 cluster.

Each computational storage disk embeds an in-order single-
scalar core for in-storage-device computation on top of the

data streams from storage media. We model this core after
an in-order RISC-V core Ibex [5]. RISC-V is chosen for its
compilation tool-chain availability to streamline the evaluation,
but we believe the results are independent of specific ISA and
transferrable. We use Spike [6] to simulate column select tasks
and emit execution traces for performance analysis.

Figure 8 details the performance after only upgrading
DCache cluster to use computational storage disks from
baseline. Because data is selectively transferred out from
DCache storage after the offloaded column select operations,
the bandwidth requirement on the later resources (backbone
networks, UCT2 disks, UCT2 compute) is largely reduced.
Overall, this upgrade generates 9.3x speedup, 7.4% better
than upgrading both the backbone network and storage in
UCT2 from HDDs to SSDs. The system bottleneck is DCache
disks serving data to DCache in-storage computation. If further
improving DCache disks’ bandwidth to match the in-storage
computation, Higgs boson analysis can enjoy another 10%
speedup.

V. DISCUSSION

A. Analytical performance model

In fact, due to the highly parallel and efficient pipeline
nature of the Higgs boson analysis, the analysis performance
measured in latency can be calculated approximately through
the system performance.

Without computational storage(as it would change the
amount of data for later stages), we could view the analysis as
the process of shovelling same amount of data into pipes with
different bandwidth: DCache disk read, DCache → network,
UCT2 disk write, UCT2 disk read, UCT2 compute. The results
write back stage is omitted as the amount of data (statistics) to
store back is more than 10000 times less. Under this framing,
the application performance is clearly determined by the pipe
with lowest bandwidth:

bn
.
= BackboneNetworkBandwidth

dd
.
= DCacheAggregateDiskReadBandwidth

ud
.
= UCT2AggregateDiskReadWriteBandwidth

uc
.
= UCT2AggregateComputeThroughput

ApplicationLatency =
EventDataSize

min(bn, dd, ud, uc)

Table I compares the latency based on the analytical model
and the latency from the simulation. The analytical latency
only significantly deviates from simulated latency in the up-
grades of both 1000 Gbps backbone and UCT2 SSD. The
8.6x speedup in this case makes the latency (around 70 sec)
of a single stage-4 task (Higgs boson statistics computing on
a single 3.8 GB CMS data file) visible.

Under this analytical model, the upgrade consideration
essentially follows the ‘Liebig’s barrel’. This is the reason
we see network upgrade is of top priority and then upgrading
compute cluster UCT2 storage with SSDs.



Data Size Bottleneck Bandwidth Analytical Latency Simulated Latency
Baseline Backbone network 100 Gbps 3776 s 3896 s
1000 Gbps Backbone 47.2 TB UCT2 disks R+W 410 / 3 Gbps 2762 s 2907 s
1000 Gbps Backbone + UCT2 SSD Backbone network 1000 Gbps 378 s 452 s

TABLE I: Analytical model VS simulated results

Area(mmˆ2) Power(mw)
Computational storage disks 1.58 9.64
Extra CPU in DCache 63.41 23216.00
Ratio 40.2 2408.5

TABLE II: Silicon area and power

B. The case for computational storage

Computational storage at DCache is the out-of-box solution
that breaks ‘Liebig’s barrel’ trade-off as a local optimum. By
preprocessing and emits only the needed data, computational
storage reduces the data size for all resources used in the
later stage. It essentially improves the effective bandwidths
of these later resources by the reciprocal of the selection ratio
(averaging at 6.53% in Higgs boson analysis on CMS data).

As a result, employing computational storage alone would
virtually upgrades both the backbone network and UCT2
SSDs, and much more, greatly improving analysis capacity
in tier-2 data sites.

C. Cost considerations

Many may wonder, does the benefits of computational
storage apply by adding computing resources(CPUs) in the
DCache cluster and perform the column selecting tasks on the
added computing resources. The short answer is ‘Yes’, but that
would not the most cost-efficient or energy-efficient solution.

We compare the costs in silicon area and power con-
sumptions of employing CPUs or computational storage disks
to perform the column selecting tasks before sending out
from the DCache storage cluster. Through benchmarking, the
computing performance on column selection of 40 in-scalar
RISC-V cores amounts to 9.1x of a single Skylake-SP core.
We compare the silicon area and power of eight SkylakeSP [7]
cores with fourty ibex [5] cores, representing the two scenario.
The numbers for ibex cores comes from synthesis results
with Synopsys Design Compiler. The numbers for SkylakeSP
comes from our best estimation based on its die shots and
thermal design power.

The results are shown in Table II. Employing extra CPUs in
DCache for the column selection tasks costs 40x more silicon
area and 2400x more power than employing computational
storage disks.

VI. RELATED WORK

There has been several work [8], [9] trying to modernize the
computing infrastructure for global CERN/HEP collaboration.
Girone summarized the unprecedented computing and data
challenges posed by hugely increased collision rates after the
HLLHC upgrade [9]. Rocha et. al. reproduced the famous
Higgs boson analysis with Kubernetes and containers to show-
case the power of container and computing orchestration with

modern computing management systems in exploiting data-
level parallelism. However, what is missing is a thorough
reevaluation of the design choices made in building and
developing the HEP data sites. which is the essence of this
paper.

On the other hand, the academia has witnessed several point
studies of applying computational storage for file system [10]–
[15] or database [10], [13], [16]–[21] applications. These work
feature performance speedup from employing computational
storage but did not consider the implications in terms of the
data center as a whole, which is one of the goals in this work.

VII. SUMMARY

We built a throughput-oriented performance model for tier-2
data centers, the workhorses in HEP grid, to evaluate different
upgrade options for improving analysis capacity. We find that
computational storage is the out-of-box solution that breaks
the traditional ‘Liebig’s Barrel’ dilemma and provide the most
cost-efficient and power-efficient upgrades, because its ability
to decrease amount of data to process for later stages.

Out future work includes prototyping a computational stor-
age disks [22] as well as architecting a domain-specific pro-
cessor for high-energy physics in-storage computing.
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