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Detecting collision events from 8

different experiments (e.g. ATLAS, CMS,
LHCDb, ALICE) around the ring, the Large
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Introduction to HEP analysis
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CERN and HEP community builta To meet the growing analysis

Hadron Collider (LHC) produces a huge  demands.

amount of data.
Despite the filtering from purposely-buil
real-time triggering mechanisms, the

collected events still mount up to 100PB
per year for physicists around the world

to analyze and test different theories of
high-energy physics (HEP).

t

tiered grid [1] around the globe to
meet the storage and analysis

the conventional wisdom on
developing the HEP data

centers is to buy disks to host analysis.
continuously growing data.

4 THE UNIVERSITY OF  Computational Storage to Increase the Analysis Capability of Tier-2 HEP Data Sites

capacity especially for the luminosity
increase [2] (and hence the collision

rate and HEP data collection) after
e Limited by cost considerations, the long shutdown of LHC.

e The large disk pools offer an Increase analysis capacity

opportunity to improve analysis

performance.

Higgs boson analysis performance with different upgrades
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@Backbone network 100 Gpbs -> 1000 Gbps. 1.34x
Network bottleneck addressed. UCT2 disk bottleneck

e Developed a parametric model of
a tier-2 data center, workhorse for

e Evaluated upgrade options to

iIncluding computational storage
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Methodology
S4: Compute and collect S1: Storage Computation Stages. The processing of each file (~3GB,~10000
Higgs Bosem Siatisties Column select events) CMS dataset is treated as independent jobs.
/—\ 7 Each job is of the following stages:
24 g 1. In-storage computation at DCache cluster
%, S 2. Data staging: DCache—UCT2
O S
10 Gbos - S 3. In-storage computation at UCT2 cluster
100 Gbps / \ 100 Gbps - 4. Higgs boson stats compute at UCT2 cluster
=2

W% 5. Store results N 5. Store back results: UCT2—DCache
UCT2 (256 nodes, S2: Data staging 2 Stage 1 and Stage 3 are optional and only applicable
gzdf:rgse; 2??1%6 " DCache (30 nodes when computational storage [3] upgrade is considered

40 disks per node) for column select (sliming).

Workload.Higgs boson analysis with 47TB CMS datasetis Approach. A C++ simulator implements the
used as the workload. It independently maps two steps of ~ Performance model with task-level granularity, where

computation to each collision event. each stage for a job is instantiated as a task. It
e Apply filters to muons, global muons, electrons tracks. ~ Simulates task progress under the modeled
e Calculate statistics on filtered muons, global muons, customizable resource properties and produce the

electrons tracks in the event for potential Higgs bosons.  application performance measured in latency.
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» LY N analytical model for analysis performance:
0 100 200 300 400 bn = BackboneN etworkBandw:idth Ratio 40.9 2408 5
Time (sec) 452 sec dd = DCacheAggregateDisk Read Bandwzidth | |
—.—- DCache outbound UCT?2 inbound B ud = UCT2AggregateDisk ReadW rite Bandwidth Compute .elen.]ents n Computajuonal
—-—- DCache nodes outbound —— UCT2 cores uc = UCT2AggregateComputel hroughput storage disks is modeled ater ibex
Cacha digke UCT?2 disks o oot DataSise cores [4]. Numbers for CPU are
ApplicationLatency = min(bn, dd, ud, uc) extrapolated from Skylake-SP specs
@Backbone network 1000 Gpbs & UCT2 SSDs. 8.62x T and die-shots [5]
Disk bottleneck addressed. Backbone network bottleneck again. Comparing analytical model and simulation
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