

Detecting collision events from 8 different experiments (e.g. ATLAS, CMS, LHCb, ALICE) around the ring, the Large Hadron Collider (LHC) produces a huge amount of data.

Despite the filtering from purposely-built real-time triggering mechanisms, the collected events still mount up to 100PB per year for physicists around the world to analyze and test different theories of high-energy physics (HEP).

Introduction to HEP analysis

CERN and HEP community built a tiered grid [1] around the globe to meet the storage and analysis demands.

- developing the HEP data continuously growing data.
- The large disk pools offer an performance.

Computational Storage to Increase the Analysis Capability of Tier-2 HEP Data Sites Robert Gardner, Ilija Vukotic Chen Zou, Andrew A. Chien

• Limited by cost considerations, the conventional wisdom on centers is to buy disks to host opportunity to improve analysis

To meet the growing analysis capacity especially for the luminosity increase [2] (and hence the collision rate and HEP data collection) after the long shutdown of LHC.

- Developed a parametric model of a tier-2 data center, workhorse for analysis.
- Evaluated upgrade options to increase analysis capacity including computational storage

Methodology

Workload. Higgs boson analysis with 47TB CMS dataset is used as the workload. It independently maps two steps of computation to each collision event.

- Apply filters to muons, global muons, electrons tracks.
- Calculate statistics on filtered muons, global muons,

Approach. A C++ simulator implements the performance model with task-level granularity, where each stage for a job is instantiated as a task. It simulates task progress under the modeled customizable resource properties and produce the application performance measured in latency.

Stages. The processing of each file (~3GB,~10000 events) CMS dataset is treated as independent jobs. Each job is of the following stages: 1. In-storage computation at DCache cluster 2. Data staging: DCache \rightarrow UCT2 3. In-storage computation at UCT2 cluster 4. Higgs boson stats compute at UCT2 cluster 5. Store back results: UCT2 \rightarrow DCache Stage 1 and Stage 3 are optional and only applicable when computational storage [3] upgrade is considered for column select (sliming).

Silicon area and power

We compare silicon area and power consumptions of employing CPUs or computational storage disks to perform the column selecting tasks before sending out from DCache cluster.

	Area(mm^2)	Power(mw)
Computational storage disks	1.58	9.64
Extra CPU in DCache	63.41	23216.00
Ratio	40.2	2408.5

Compute elements in computational storage disks is modeled after ibex cores [4]. Numbers for CPU are extrapolated from Skylake-SP specs and die-shots [5].

Acknowledgement

This work was funded in part by the National Science Foundation Cooperative Agreement OAC-1836650.

References

[1] The grid: A system of tiers," https://home.cern/science/computing/grid-system-tiers. [2] High-luminosity lhc," https://home.cern/science/accelerators/high-luminosity-lhc [3] C. Zou and A. A. Chien, "Empowering architects and designers: A classification of what functions to accelerate in storage," UChicago CS TR-2020-02. [4] P. D. Schiavone and F. Conti, "Slow and steady wins the race? a comparison of ultra-low-power risc-v cores for internet-of-things applications," in PATMOS'17. IEEE, 2017 [5] "Skylake SP Die Shot," https://i.imgur.com/Na64wWe.jpg