
PSACS: Highly-Parallel Shuffle Accelerator on
Computational Storage

Chen Zou
Computer Science

University of Chicago
Chicago, IL, USA

chenzou@uchicago.edu

Hui Zhang
Memory Soluation Lab

Samsung Semiconductor, Inc.
San Jose, CA, USA

w.hzhang86@samsung.com

Yang Seok Ki
Memory Soluation Lab

Samsung Semiconductor, Inc.
San Jose, CA, USA

yangseok.ki@samsung.com

Andrew A. Chien
Computer Science

University of Chicago
Chicago, IL, USA

achien@cs.uchicago.edu

Abstract—Shuffle is an indispensable process in distributed
online analytical processing systems to enable task-level
parallelism exploitation via multiple nodes. As a data-intensive
data reorganization process, shuffle implemented on
general-purpose CPUs not only incurs data traffic back
and forth between the computing and storage resources, but also
pollutes the cache hierarchy with almost zero data reuse. As a
result, shuffle can easily become the bottleneck of distributed
analysis pipelines.

Our PSACS approach attacks these bottlenecks with the
rising computational storage paradigm. Shuffle is offloaded
to the storage-side PSACS accelerator to avoid polluting
computing node memory hierarchy and enjoy the latency,
bandwidth and energy benefits of near-data computing. Further,
the microarchitecture of PSACS exploits data-, subtask-, and
task-level parallelism for high performance and a customized
scratchpad for fast on-chip random access.

PSACS achieves 4.6x−5.7x shuffle throughput at kernel-level
and up to 1.3x overall shuffle throughput with only a twentieth
of CPU utilization comparing to software baselines. These mount
up to 23% end-to-end OLAP query speedup on average.

Index Terms—shuffle, accelerator, computational storage,
SmartSSD, OLAP

I. INTRODUCTION

As the extractor of task-level parallelism for multiple nodes
to exploit, shuffle is an essential process in distributed data
analytics systems [1]–[5]. Shuffle at each node would first
trigger the materialization of the intermediate results, which
are then partitioned and grouped as local shuffle output and
stored into local storage. These shuffle output would be fetched
by different nodes across the cluster for later-stage tasks.

Fig. 1: Shuffle bottleneck in OLAP systems

However, multiple batches of partitioned data are spilled out
into storage drives during shuffle. These spilled data need to
be fetched back into the main memory to be grouped together
to enable larger access granularity for efficient data transfer
over the network. This process incurs traffic back and forth
between compute and storage as well as ill use of the memory
hierarchy, resulting in cache thrashing and page swapping.

These issues make shuffle a performance bottleneck as
shown in Figure 1. The measurement was taken on four
SSD-equipped 44-SkylakeSP-Core servers connected through
1GE network with jvm-profiler [6]. The workloads are all of
the 22 TPC-H [7] queries with scaling-factor 1000 (i.e. raw
table sizes totaling roughly 1000 GB) implemented with Spark
v3.0.1 [3]. Shuffle tasks can take up to 40 percent CPU time
of the entire query execution.

Different from existing work on software optimizations [8],
[9], network fabric improvement [10], [11] or function-specific
acceleration of partitioning [12], [13], sorting [14] or
aggregation [15], we look into PSACS, a highly-Parallel
hardware Shuffle Accelerator employing the Computational
Storage paradigm (shown in Figure 2) targeting the distributed
OLAP workload. PSACS excels in shuffle performance by
exploiting task-, subtask- and data-level parallelism. It also
employs tiled shuffling and a customized scratchpad for
efficient memory accesses at different levels of the memory
hierarchy, addressing the aforementioned issues.

In summary, our contributions are three-folded:
• Designed the first shuffle accelerator on computational

storage. Offloading shuffle to computational storage
constrains shuffle-related accesses inside storage, and
thus largely reduces CPU’s cache thrashing.

• Designed PSACS microarchitecture exploiting task-,

Fig. 2: System architecture w/o and w computational storage

1



subtask- and data- level parallelism and customized
scratchpads for high performance random accesses.

• Showcased PSACS performance benefits, host CPU
utilization reductions as well as synergy supports for
output redistribution of PSACS.

The rest of the paper is organized as follows. In
Section II, we discuss backgrounds for shuffle and SmartSSD.
In Section III, we bring out algorithms and approaches
behind PSACS. In Section IV, detailed PSACS architecture
is discussed. We provide evaluation methodology and
evaluation results of PSACS’s implementation on SmartSSD in
Section V. Related work is covered in Section VI. We discuss
the summary and future work in Section VII.

II. BACKGROUND

A. Shuffle in distributed systems

Shuffle is an indispensable operation in distributed
computing systems [1]–[5]. It redistributes data across the
computing nodes according to meaningful repartitioning
to enable the exploitation of partition-level parallelism in
distributed systems. After shuffle, the computation to carry out
on each partition would be independent, allowing concurrent
computations on multiple cores across multiple nodes.

Let us use the famous word counting problem that is first
coined by MapReduce [5] as an example (see also Figure 3).
First, the map tasks in each node would independently and
thus concurrently map the words assigned to the node to
tuples: (word, 1). In order to utilize each node (and each
core) to perform independent aggregation, tuples with the
same word must end up in the same node. This is where
shuffle comes into play. Tuples have to be shuffled on word
(shuffle key) to form multiple partitions but ensuring the tuples
with the same shuffle key go into the same partition. Then,
the reduction on counts for each partition could be executed
concurrently. This same-key-same-partition property is what
we call ‘meaningful’ partitioning. The most used scheme for
partitioning is to use a single hash function on each shuffle key
to determine its destination partition. If the same hash function
is used by all the nodes or cores performing local partitioning,
the same-key-same-partition property is guaranteed.

Shuffle generally has three steps as shown in Figure 3:
• Partition: Apply partitioning scheme to the records to

determine their destination partitions.
• Group: Group records by their destination partitions for

efficient access during Distribution.
• Distribute: Distribute records based on their destinations.
Only the Distribute step involves communications across

nodes. Each node (each core) carries out the Partition step
and Group step on its own without synchronizations or
communications with other nodes (cores). These properties
shape the notion of ‘stage’ and ‘task’ in distributed OLAP
systems, as shown in Figure 4. A shuffle process spans two
stages, with Partition and Group step (together called as
ShuffleWrite) at end of the prior stage, and the Distribute step
is done at the beginning of the following stage through pulling

Fig. 3: Shuffle steps. WordCount on three nodes as an example

Fig. 4: Shuffle separates two stages of local compute

rather than pushing (thus called ShuffleRead). The compute
results of a prior stage are persistently stored into storage
during ShuffleWrite for reliability and failure-recovery. Any
failure of a stage would only require recomputation from the
ShuffleWrite results of the previous stage stored in storage,
rather than starting from the beginning.

B. SmartSSD: a computational storage drive

Recent rapid increases in storage device capacity and
bandwidth have shifted scaling and cost bottlenecks in
the modern HPC or cloud data center architecture to the
CPU and interconnect. Computational storage is a thread
of efforts trying to address this changing balance. It adds
computation and acceleration capabilities inside the storage,
moves computation closer to the storage to reduce data
movement, and enables autoscaling of the computation with
storage capacity and bandwidth.

SmartSSD [16] is one of the first industry products in the
direction of computational storage. As shown in Figure 5,

Fig. 5: SmartSSD: a computational storage drive

2



SmartSSD integrates a Xilinx FPGA chip onto the solid-state
drive, next to its flash array which possesses excessive
bandwidth as opposed to what an SSD exposes. Although
FPGA is still a peer to the PCIe endpoint of the SSD, FPGA
and SSD PCIe endpoint share the same PCIe switch. This is
an essential step toward opening up the storage and allowing
near-data computation. The FPGA can get access to the data
in storage without passing them through the host memory,
CPU or PCIe root complex, which opens up to early-filtering
and data reduction opportunities to address the aforementioned
computation and interconnect bottlenecks.

III. SHUFFLE ACCELERATION APPROACH

A. System architecture

We envision a system architecture following Figure 2.
Every node in the system features a PSACS-enabled storage
device. Map tasks are applied to the records (e.g. rows
in Dataframes in the case of Spark) by the CPU of each
node before streaming into the computational storage DRAM.
There, PSACS would perform shuffle Partition and Group for
local map outputs, which also constrains shuffle traffic inside
storage. Results are then persistently stored into the storage
media (e.g. flashes) for durability and failure recovery (see end
of Section II-A). At the same time, CPU(s) are free to compute
for other map tasks, given the ample task-level parallelism in
OLAP workload. PSACS interfaces to Spark, specifically, with
a new shuffle manager wrapping the PSACS shuffle kernel on
SmartSSD FPGA. Data are written from SmartSSD FPGA to
flashes via PCIe peer-to-peer transfers.

Recall that shuffle Partition and Group do not involve
communications across nodes (see the end of Section II-A),
shuffle acceleration carried out in one PSACS-enabled storage
device is independent of other nodes and PSACS devices.
Further, results after Partition and Group to be fetched by each
node for next-stage computation are contiguous in storage. It
is easy to form a block-level prefetch/compute pipeline to hide
network latency of next block under the computation of the
current block. Thus, the latency added by Shuffle Distribute is
negligible as shown in Figure 1. If each node enjoys shuffle
acceleration by PSACS, collectively, the shuffle process across
the whole distributed OLAP system is accelerated.

In the following section, we will describe PSACS’s
approach to accelerate shuffle’s Partition and Group steps.

B. Partitioning acceleration approach

Partitioning assigns a new partition label for each record to
be shuffled. And this label determines the shuffle destination.
We take a hash approach for Partitioning considering its
generality of not requiring shuffle keys to have a total order
relation. Different from hash approaches used in Cryptography,
collision resistance is not a priority. Rather, each partition
should get a near-even allocation of shuffling records. The
hash function we considered is a variant of folding hash, as
shown in Figure 6. We additionally zigzag the bits in a shuffle
key to improve robustness and evenness. Our PSACS design

Fig. 6: Zigzag-fold hash. bi is the i-th bit of shuffle key. hj is
the j-th bit of output. Only 10-bit output situation is drawn

is not dependent on this chosen hash. Different hash modules
or even other partitioning schemes can be easily swapped in.

C. Grouping acceleration approach

Shuffle Grouping is most challenging because it performs
data reorganization among a huge working set with scarce
data reuse opportunities. There are two most used approaches:
bucketing and sorting.

Bucketing-based grouping allocates a bucket for each
destination partition. After assigned a partition label by
the partitioning scheme, each record is inserted into the
corresponding bucket. However, without efficient memory
management in a computational storage environment, we will
end up allocating memory capacity for each bucket based
on an extreme scenario to avoid overflow, resulting in huge
memory wastes and aggravated spilling to storage drives.
Even with a memory allocator like the one in Caribou [17],
bucketing based-solution does not scale well as it presents a
linear scaling of bucket size requirement for on-chip SRAM
over the number of destination partitions (i.e. #cores in
a distributed OLAP system). It would be infeasible for a
scaled-out distributed OLAP system. This is the root cause
of cache thrashing and low performance in existing software
shuffle implementations when opting for bucket-based shuffle
grouping (BypassMergeSortShuffleWriter in the case of
Spark [3]). And this is also the drawbacks of existing
single-node-oriented hardware partitioning accelerators [12],
[13] for only support either a small number of partitions (e.g.
up to 256 [13]) or fixed short 8-Byte rows [12].

Sort-based grouping arranges the records by sorting them
based on assigned partition labels. The resources required do
not grow with the number of partitions needed to support,
making the approach suitable for a scaled-out distributed
OLAP system. Further optimization is: instead of sorting the
records (each could be large) directly, sort the record pointers
(each is small, e.g. 8B) with the partition label and perform
gather for each sorted pointer to replace the pointer with the
actual record. This reduces the data copy operations from
O(logN) to O(1) per record, improving grouping performance
for the OLAP case which features not-so-short records.
However, the gathering process features random accesses over

3



a large working-set and almost none temporal locality. This
would trigger cache thrashing if not treated carefully.

We opt for sort-based grouping for its scalability. We
address the issue of random access during the gathering
process through the use of a customized scratchpad and exploit
data-level parallelism for long record gathering, both of which
would be described in detail in Section IV.

D. Distribute considerations

In terms of the Distribute step for data that is already
Partitioned and Grouped, our core consideration is to
enable better compression before transmitting over the
network to enjoy higher effective bandwidth (multiplied by
compression ratio) and reduce network traffic. This brings both
performance and energy benefits, especially for the scenario of
disaggregated compute and storage resource pools for ease of
management and separate scaling where network connecting
the two pools is potentially busy.

For this purpose, our PSACS acceleration interface is
carefully designed to accept and emit column-major table
slices. Although PSACS does not contain a compression
module, the columnar interface design opens up to the
opportunities of better compression and higher benefits, as the
similarities among the data in the same column are higher [18].

IV. PSACS ARCHITECTURE

A. Microarchitecture of PSACS

The PSACS microarchitecture (depicted in Figure 7)
features the following modules:

• FSM: Controls the shuffle process.
• Reader: Manages a scratchpad as on-chip random access

buffers for the table data. Accept the prefetch of table data
from DRAM into this buffer. Serves the data to Gather
upon random access by the table RowID.

• Partitioner: Accept shuffle keys streamed from the reader.
Map keys via hash (Section III-B) to partition ID(PID).

• Sorter: Sort tuple (PID, RowID) from Partitioner by PID
and stream the sorted tuples into Gather.

• Gather: Gather rows from Reader by RowIDs in sorted
tuple streams from Sorter through random accessing a
scratchpad in Reader.

• Writer: Stream the rows from Gather to DRAM.
• Indexer: Generate an index identifying the portions of

each partition across shuffle batches.
• Merger: Merge according to indexes, grouping the records

going to the same partition across batches. Merger also
split each row into different fields for columnar store.

Please recall that we employ hash-based partitioning and
sort-based grouping with optimization of first pointer sorting
and then gathering as discussed in Section III-C. Partitioner
implements our hash-based partitioning approach, while Sorter
and Gather collectively implement our optimized sort-based
grouping approach. The Reader and Writer are memory
hierarchy modules that manage a customized random-access
scratchpad and a write-buffer respectively, and handle the
implementation of the computational storage DRAM access

protocol. The Indexer and Merger relate to the tiled shuffling
which we will discuss in Section IV-B.

We will walk through each module with the word counting
example we first used in Section II-A. Please see green texts
in Figure 7. First, records in (word, 1) are prefetched into
the scratchpad by the Reader to prepare for later random
access by the Gather. Second, during this process, the shuffle
keys (word) are further streamed into Partitioner and produced
tuples of (PID, RowID). PID is a partition ID. RowID is a
record pointer (An index to a table row in the OLAP case).
Third, tuples of (PID, RowID) are streamed into Sorter and
sorted by PID. This is the indirect sorting we discussed in
Section III-C. Fourth, Gather would replace RowID in the
sorted tuple stream with the actual record contents through
random accessing Reader’s scratchpad with RowID as the
address. Fifth, the Writer would accept (PID, Record(word,
1)) tuples and translates to AXI packets to write these outputs
to computational storage DRAM.

Because gathering is performed in the order of associated
sorted PIDs, the output records, which are streamed from
Gather through Writer into computational storage DRAM, are
grouped (or to be more specific, sorted) by PIDs.

B. Tiled shuffling tailoring for memory hierarchy

As discussed in Section I, software shuffle on CPUs
suffer from the ill use of the memory hierarchy. In contrast,
PSACS efficiently utilizes each level of the memory hierarchy
through optimizing the overall shuffle via tiling. Tiling also
enables PSACS to support shuffle tasks in different sizes
independent from computational storage DRAM size through
divide-and-conquer.

Shuffle is first carried out in batches, where the size of
each batch is limited by the on-chip memory resources of
PSACS. The on-chip memory is used as a scratchpad (in
Reader) to provide fast and efficient random access as needed
by the Gather. Once enough batches of records are shuffled, the
Merger is triggered to further group shuffle results going to the
same partition across different batches through reorganizing
the contents in the computational storage DRAM, as shown
in Figure 8. For each partition, the Merger (more specifically
AddrGen) checks the indexes generated by Indexer for each
batch, fetches the records assigned to that partition from
DRAM and concatenates them together. The merged shuffle
results are then written into storage media for persistency and
failure recovery. In our implementation on SmartSSD, this
is done through PCIe peer-to-peer transfer between FPGA
DRAM and SSD DRAM.

Merging carried out by the Merger would make shuffle
Distribution (i.e. ShuffleRead in next-stage tasks) mostly
sequential reads over distributed storage, largely increases the
efficiency and reduces the latency, as shown in Figure 1.

Depending on the needs of the workloads, there may be
another level of grouping that merges shuffle results externally
on disk by rearranging the disk pages. It is even possible to
tap into the flash translation layer [19] and reorganize the
mapping to achieve virtual merging. Because of the embracing

4



Fig. 7: Microarchitecture diagram of PSACS

Fig. 8: Merging across multiple shuffled batches

of the computational storage paradigm, our PSACS system
architecture is flexible to support this as a future extension.

C. Scratchpad memory for efficient random access

As discussed in Section III-C, in our improved sort-based
Group, we first sort the record pointers (short, 8B) by the
shuffle key and then gather the records (long, variable) to
arrange the records by the order from sorting. Since each row
of the table is only gathered once, there is no temporal locality
during this process. Further, as the gathering process features
random accesses to a large working set, the spatial locality is
also scarce. Thus, the employment of cache for the shuffle
Group step would only incur latency and energy overhead
of fetching more data (cache line size) onto the chip and
wasting precious on-chip memory resources. As a result, we
opt for a customized scratchpad memory specifically serving
the random access from the Gather. The scratchpad memory
is a flat memory without tag arrays (as there is no locality).
The Reader manages the data in the scratchpad memory by
prefetching the table data. The Reader also performs clever
layout and alignment for different columns with different
widths to support efficient streaming access needed by the
Partitioner for shuffle keys, and high-speed wide random
access needed by the Gather.

D. Parallelism and their exploitations

There is plenty of parallelism in the shuffle process, and
our PSACS microarchitecture enables us to exploit them.
First, the shuffle grouping subtask features the data-level

parallelism as the whole record (or in the OLAP case, the
whole row) needs to be reordered by the sorted pointers
(RowIDs in OLAP). The scratchpad memory managed by
the reader features a wide data path for random access by
the Gather, exploiting data-level parallelism. Second, there
is subtask-level parallelism in shuffle workloads. The data
prefetching management in the reader could be overlapped
with the partitioning in Partitioner and the pointer sorting
process in Sorter. To enable the exploitation, we prioritize the
prefetching of the shuffle keys and streaming in the shuffle
keys to the partitioner at the same time. With keys fetched,
the prefetching of other values could be overlapped with
partitioning of keys and the pointer sorting. Finally, there is
task-level parallelism to exploit. There are multiple partitions
of local map results to be shuffled, because map tasks are
carried out in parallel by multiple cores in a single node. The
multi-processing paradigm could be employed by duplicating
PSACS to shuffle different partitions in an embarrassingly
parallel manner. Although in our implementation, we are
limited to one PSACS kernel on SmartSSD due to resource
limits (mostly limited by on-chip memory size).

E. Columnar output for better compression and redistribution

As discussed in Section II-A, we aim to provide synergy
support for the shuffle Distribution by enabling better
compressibility through a column-major output format.

The Merger module contains the transpose functionality
to achieve this. Each column is assigned a unique buffer
(ColBuffer) before writing to computational storage DRAM.
Transpose is delayed until merging for maximum exploitation
of data-level parallelism in Partition and Group steps.

V. EVALUATION

A. Methodology

As discussed in Section III-A, the shuffle Partition and
Group steps are independently accelerated without cross-node
communication, and the added latency from shuffle Distribute
are really low. Thus, we evaluate PSACS in a single-node

5



TABLE I: Resource utilization of PSACS on SmartSSD

LUT FF BRAM URAM DSP
Avail 522720 1045440 984 128 1968
Used 61917 80885 433 64 0
Util 11.85% 7.74% 44.00% 50.00% 0.00%

Fig. 9: Shuffle kernel performance

setting to reduce uncontrolled variables. A server with a
44-core SkylakeSP CPU, 128GB DRAM and a PCIe-attached
SmartSSD as discussed in Section II-B is used. We opted
for SmartSSD for the simplicity of conducting evaluations.
We believe that results are transferrable to other FPGA-based
computational storage platforms.

The workload is the most data-intensive (see Figure 1)
shuffle kernels (named with ‘Qid tablename’) extracted from
Apache Spark v3.0.1 [3] implementation of TPC-H queries [7].
The number of partitions that shuffle would output is set to be
1024, which corresponds to a cluster with dozens of nodes.

We compare PSACS against two hand-optimized software
shuffle kernels, each implementing one grouping algorithm
as described in Section III-C, and named as ‘Sort’
and ‘Bucket’. The two kernels very much resemble the
BypassMergeSortShuffle and SortShuffle from Spark.

B. PSACS implementation on SmartSSD

We implemented PSACS on a SmartSSD with a KU15
FPGA via System Verilog and Xilinx Vitis. We adapt a merge
sorter [20] for the Sorter module to achieve O(Nlog2N) time
complexity for sorting. The scratchpad for random access is
implemented with UltraRAMs to hold a large working set.

PSACS is synthesized to run at 221 MHz. The overall
resource utilization is summarized in Table I.

C. Shuffle kernel performance of PSACS

First, we compare kernel-level performance. All three
approaches are implemented with a single thread. And the
performance here does not consider the latency of data
preparation or storing results into the storage media.

Figure 9 shows the kernel-level shuffle performance of
PSACS and its software counterparts. The performance here is
the geometric mean of the throughput over all the tasks from
the corresponding shuffle workload. Our PSACS approach
features 4.6x−5.7x higher kernel-level shuffle performance

Fig. 10: Multithreading and system-level pipeline scaling for
shuffle throughput on Q05 slineitem

Fig. 11: Multithreading and system-level pipeline scaling for
shuffle throughput on Q11 spartsupp

than its software counterparts. The performance comes from
efficient parallelism exploitation and the use of customized
scratchpad that eliminates thrashing.

D. Overall shuffle performance of PSACS

In this section, we consider the shuffle workload from
the perspective of an overall system. Both data preparation
before shuffle and results writing to storage media after
shuffle are included. Further, software baselines can employ
up to 32-thread multithreading to exploit task-level parallelism.
Falling short of resources on SmartSSD FPGA for task-level
parallelism, at any time, there is only one shuffle kernel
processing shuffle tasks in PSACS. But the PSACS
approach would exploit system-level pipelining to absorb data
preparation and results storing latency into the latency of
PSACS shuffle acceleration. This is only up to 4-threads
because of the diminishing returns. Thus, at most four cores
are used from the host CPU by PSACS. much less than the
32 cores in the two software baselines.

We first investigate how multithread scaling would affect
the performance. Figure 10 and 11 show detailed scaling for
shuffle workloads from two TPC-H queries. The performance
of the software-based methods saturates around 16 threads
because of the increasing cache thrashing. On the other hand,
system-level pipelining significantly improves overall shuffle
throughput for PSACS through the latency hiding.

Figure 12 shows the overall shuffle performance of PSACS,
with comparisons to the two software baselines on the

6



Fig. 12: Overall shuffle performance on shuffle-intensive
TPC-H queries

Fig. 13: CPU core utilizations for shuffle on shuffle-intensive
TPC-H queries

TPC-H shuffle-intensive queries. And Figure 13 depicts the
corresponding CPU core utilization. 1. Please notice that
our PSACS approach features only one accelerator kernel
implemented on a single SmartSSD. But our PSACS approach
outperforms the up to 32-way multithread software shuffle
approaches by 10% - 31% as in Figure 12. PSACS also
features more than 20 times lower CPU core utilization as
in Figure 13, which liberates the host CPU and memory for
other map tasks that is not yet computed.

Further, this low utilization could lead to significant
scaling-up opportunities, as the CPU has enough headroom
to drive dozens of computational storage drives. And because
of our computational storage approach, the shuffle acceleration
capability of PSACS scales with the storage, thus this scaling
wouldn’t hit a storage bottleneck as is the case of the
software-based shuffle approaches.

E. End-to-end query performance

We further extrapolated end-to-end TPC-H query
performance, through instrumenting Spark event traces
considering both shuffle throughput improvement by PSACS
acceleration and early start of new tasks when host CPU and

116-thread scenario for two software-based approaches as their performance
tops around there during multithreading scaling

Fig. 14: End-to-End TPC-H query latency

Fig. 15: Compression ratio: row-major VS column-major

memory is freed from shuffle through offloading to PSACS
inside computational storage.

Unmodified Spark 3.0.1 is used as the baseline to compare
with PSACS. Figure 14 shows that PSACS delivers significant
end-to-end query speedup, averaging at 23%. The speedup
comes from PSACS’s shuffle acceleration exploiting multiple
levels of parallelism and more efficient use of the host CPU
and caches.

F. Column-major for better compression in redistribution

In this section, we evaluate how much compression ratio
improvement the column-major format could bring, for a
glimpse on further multiplicative-bandwidth benefits if future
implementation of PSACS includes a compression module. We
measure the compression ratio achieved when compressing
using LZ4 on shuffle outputs in UnsafeRow (row-major)
format [21] and the compression ratio of the same shuffle
outputs but in parquet [22] which also uses LZ4 compression
but compresses in column-major format.

Figure 15 shows the overall compression ratio we can
achieve for row-major and column-major shuffle output
format with LZ4 compression. The column-major approach of
PSACS can achieve on average 1.5x better compression than
row-major approach, demonstrating effective synergy support
for the Distribute step of a shuffle process. In other words,
the column-major format could on average enable 1.5x higher
efficient network bandwidth for shuffle Distribute.

VI. RELATED WORK

Single-node partition acceleration. There is FPGA
acceleration work for partitioning in both academia [12]

7



and industry [13]. They target single-node partitioning to
enable multi-core parallelism for later operators. Bucket-based
grouping method (see Section III-C) is used, which requires
linear scaling of on-chip FPGA memory (BRAM) over the
number of destination partitions. PSACS tries to address the
scalability issues of these single-node approaches to advance
the shuffle acceleration frontier for the distributed systems.

Specific-function acceleration in OLAP. Cereal [23]
employs a customized serialization format and exploits
parallelism among serialization tasks through customization
and acceleration in memory hierarchy. SortAcc [14]
accelerates sort functions in map tasks via a fixed-function
accelerator. CASM [15] enables across-chip traffic reduction
in multi-core system by enabling local aggregation with
collaborative accelerators. All these techniques could be
integrated on the host-side (i.e. around CPU) of PSACS system
to accelerate map tasks that produce records to be shuffled,
while PSACS accelerates shuffle in computational storage.

Network transfer fabric improvement. SparkRDMA [10]
and SparkPMoF [11] drive performance improvement of the
redistribution step (see Section II-A) through the use of
better network fabrics. PSACS focuses on the partitioning and
grouping steps. These techniques are orthogonal to PSACS
and could be integrated together.

Software optimization for shuffle. Riffle [8] employs a
new shuffle merge policy to improve shuffle performance. The
policy merges small shuffle outputs or skips merging large
shuffle outputs, thus optimizing the storage IO as well as
network transfer patterns. On the other hand, Intel proposes
an in-memory shuffle [9] software architecture. It constrains
shuffle traffic inside a disaggregated non-volatile memory [24]
pool. PSACS align with the big ideas of constraining shuffle
traffic, but inside computation storage. This also opens up new
possibility for software optimizations.

VII. SUMMARY AND FUTURE WORK

We proposed PSACS, the first shuffle accelerator addressing
the shuffle bottlenecks of distributed OLAP systems.

Our PSACS approach employs the rising computational
storage paradigm. Shuffle is offloaded to the storage-side
PSACS accelerator to avoid polluting computing node memory
hierarchy and enjoy the latency, bandwidth and energy benefits
of near-data computing. Further, the microarchitecture of
PSACS exploits data-, subtask-, and task-level parallelism for
high performance and a customized scratchpad for fast and
efficient on-chip random access.

These innovations lead to 4.6x−5.7x throughput
improvements at the kernel level. Even when comparing to
multi-threading software baselines with up to 32 threads,
single-kernel PSACS on SmartSSD achieves up to 30%
overall shuffle throughput improvement with only a twentieth
of the CPU utilization. These translate to on average 23%
end-to-end query latency reduction, comparing with Spark.

Our future work includes the full integration of the
PSACS into Spark, supporting more partitioning schemes and
columnar-encoding and decoding inside storage.

REFERENCES

[1] “Big query.” [Online]. Available: https://cloud.google.com/bigquery
[2] S. Melnik, A. Gubarev, J. J. Long, G. Romer, S. Shivakumar, M. Tolton,

and T. Vassilakis, “Dremel: interactive analysis of web-scale datasets,”
Proceedings of the VLDB Endowment, vol. 3, no. 1-2, pp. 330–339,
2010.

[3] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. McCauly, M. J.
Franklin, S. Shenker, and I. Stoica, “Resilient distributed datasets: A
fault-tolerant abstraction for in-memory cluster computing,” in Presented
as part of the 9th {USENIX} Symposium on Networked Systems Design
and Implementation ({NSDI} 12), 2012, pp. 15–28.

[4] “Apache hadoop.” [Online]. Available: https://hadoop.apache.org/
[5] J. Dean and S. Ghemawat, “Mapreduce: simplified data processing on

large clusters,” Communications of the ACM, vol. 51, no. 1, pp. 107–113,
2008.

[6] “Uber jvm profiler.” [Online]. Available: https://github.com/
uber-common/jvm-profiler

[7] “Tpc-h, a decision support benchmark.” [Online]. Available: http:
//www.tpc.org/tpch/

[8] H. Zhang, B. Cho, E. Seyfe, A. Ching, and M. J. Freedman, “Riffle:
optimized shuffle service for large-scale data analytics,” in Proceedings
of the Thirteenth EuroSys Conference, 2018, pp. 1–15.

[9] “Remote shuffle.” [Online]. Available: https://github.com/Intel-bigdata/
OAP/tree/master/oap-shuffle/remote-shuffle

[10] “Sparkrdma shufflemanager plugin.” [Online]. Available: https://github.
com/Mellanox/SparkRDMA

[11] “Spark-pmof: Rpmem extension for spark shuffle.” [Online]. Available:
https://github.com/Intel-bigdata/Spark-PMoF

[12] K. Kara, J. Giceva, and G. Alonso, “Fpga-based data partitioning,” in
Proceedings of the 2017 ACM International Conference on Management
of Data, 2017, pp. 433–445.

[13] “Vitis database library.” [Online]. Available: https://www.xilinx.com/
products/design-tools/vitis/vitis-libraries/vitis-database.html

[14] S. H. Pugsley, A. Deb, R. Balasubramonian, and F. Li, “Fixed-function
hardware sorting accelerators for near data mapreduce execution,” in
2015 33rd IEEE International Conference on Computer Design (ICCD).
IEEE, 2015, pp. 439–442.

[15] A. Addisie and V. Bertacco, “Collaborative accelerators for in-memory
mapreduce on scale-up machines,” in Proceedings of the 24th Asia and
South Pacific Design Automation Conference, 2019, pp. 747–753.

[16] J. H. Lee, H. Zhang, V. Lagrange, P. Krishnamoorthy, X. Zhao, and
Y. S. Ki, “Smartssd: Fpga accelerated near-storage data analytics on
ssd,” IEEE Computer Architecture Letters, vol. 19, no. 2, pp. 110–113,
2020.

[17] Z. István, D. Sidler, and G. Alonso, “Caribou: Intelligent distributed
storage,” Proceedings of the VLDB Endowment, vol. 10, no. 11, pp.
1202–1213, 2017.

[18] M. Stonebraker, D. J. Abadi, A. Batkin, X. Chen, M. Cherniack,
M. Ferreira, E. Lau, A. Lin, S. Madden, E. O’Neil et al., “C-store:
a column-oriented dbms,” in Proceedings of the 31st international
conference on Very large data bases, 2005, pp. 553–564.

[19] Y. Kang, R. Pitchumani, P. Mishra, Y.-s. Kee, F. Londono, S. Oh,
J. Lee, and D. D. G. Lee, “Towards building a high-performance,
scale-in key-value storage system,” in Proceedings of the 12th ACM
International Conference on Systems and Storage, ser. SYSTOR ’19.
New York, NY, USA: Association for Computing Machinery, 2019, p.
144–154. [Online]. Available: https://doi.org/10.1145/3319647.3325831

[20] N. Samardzic, W. Qiao, V. Aggarwal, M.-C. F. Chang, and J. Cong,
“Bonsai: high-performance adaptive merge tree sorting,” in 2020
ACM/IEEE 47th Annual International Symposium on Computer
Architecture (ISCA). IEEE, 2020, pp. 282–294.

[21] “Spark unsaferow.” [Online]. Available: https://github.com/
apache/spark/blob/master/sql/catalyst/src/main/java/org/apache/spark/
sql/catalyst/expressions/UnsafeRow.java

[22] “Apache parquet.” [Online]. Available: https://parquet.apache.org/
[23] J. Jang, S. J. Jung, S. Jeong, J. Heo, H. Shin, T. J. Ham, and J. W.

Lee, “A specialized architecture for object serialization with applications
to big data analytics,” in 2020 ACM/IEEE 47th Annual International
Symposium on Computer Architecture (ISCA). IEEE, 2020, pp.
322–334.

[24] “Optane memory.” [Online]. Available: https://www.intel.com/content/
www/us/en/architecture-and-technology/optane-memory.html

8

https://cloud.google.com/bigquery
https://hadoop.apache.org/
https://github.com/uber-common/jvm-profiler
https://github.com/uber-common/jvm-profiler
http://www.tpc.org/tpch/
http://www.tpc.org/tpch/
https://github.com/Intel-bigdata/OAP/tree/master/oap-shuffle/remote-shuffle
https://github.com/Intel-bigdata/OAP/tree/master/oap-shuffle/remote-shuffle
https://github.com/Mellanox/SparkRDMA
https://github.com/Mellanox/SparkRDMA
https://github.com/Intel-bigdata/Spark-PMoF
https://www.xilinx.com/products/design-tools/vitis/vitis-libraries/vitis-database.html
https://www.xilinx.com/products/design-tools/vitis/vitis-libraries/vitis-database.html
https://doi.org/10.1145/3319647.3325831
https://github.com/apache/spark/blob/master/sql/catalyst/src/main/java/org/apache/spark/sql/catalyst/expressions/UnsafeRow.java
https://github.com/apache/spark/blob/master/sql/catalyst/src/main/java/org/apache/spark/sql/catalyst/expressions/UnsafeRow.java
https://github.com/apache/spark/blob/master/sql/catalyst/src/main/java/org/apache/spark/sql/catalyst/expressions/UnsafeRow.java
https://parquet.apache.org/
https://www.intel.com/content/www/us/en/architecture-and-technology/optane-memory.html
https://www.intel.com/content/www/us/en/architecture-and-technology/optane-memory.html

	Introduction
	Background
	Shuffle in distributed systems
	SmartSSD: a computational storage drive

	Shuffle acceleration Approach
	System architecture
	Partitioning acceleration approach
	Grouping acceleration approach
	Distribute considerations

	PSACS Architecture
	Microarchitecture of PSACS
	Tiled shuffling tailoring for memory hierarchy
	Scratchpad memory for efficient random access
	Parallelism and their exploitations
	Columnar output for better compression and redistribution

	evaluation
	Methodology
	PSACS implementation on SmartSSD
	Shuffle kernel performance of PSACS
	Overall shuffle performance of PSACS
	End-to-end query performance
	Column-major for better compression in redistribution

	Related Work
	Summary and Future Work
	References

