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Shuffle enables parallelism exploitation for OLAP
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Shuffle



However, Shuffle may be a bottleneck
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Shuffle

Most challenging!

Cache thrashing. Spills



Shuffle may take ⅓ latency of an OLAP query

TPC-H with scaling factor 1000.

4 nodes running Spark 3.0.1 

connected with 1Gbps ethernet. 

CPU time collected with JVM-

profiler[6].
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PSACS: Highly-Parallel Shuffle Accelerator

on Computational Storage

First shuffle acc on computational storage.

● Confines shuffle traffics in storage

● Liberates CPU and memory

PSACS microarchitecture exploits:

● Task, subtask and data-level parallelism

● Custom scratchpad for efficient gathering

PSACS achieves acceleration benefits:

● 5x kernel-level shuffle throughput

● 23% OLAP query speedup on average
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PSACS partition approach: Hash

We opt for hash-based partition 

for its generality.

‘evenness’ rather than ‘collision 

resistance’ is the key here.

We apply a variant of fold hash 

that additionally zig-zag the 

input. 

b00 b01 b02 b03 b04 b05 b06 b07 b08 b09
⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕

b19 b18 b17 b16 b15 b14 b13 b12 b11 b10
⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕

b20 b21 b22 b23 b24 b25 b26 b27 b28 b29

॥ ॥ ॥ ॥ ॥ ॥ ॥ ॥ ॥ ॥

h00 h01 h02 h03 h04 h05 h06 h07 h08 h09



PSACS group approach

Bucketing (BypassMergeSortShuffleWriter, FPGAPart[12], Vitis[13]):

● Maintain a bucket for each destination partition to hold records going there.

● Hard to implement growable buckets without malloc-like dynamic memory allocation 

in hardware accelerators.

● Static bucket allocation presents linear scaling between capacity and #partitions.

● Parallelism exploitation leads to another shuffle problem.
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Bucketing (BypassMergeSortShuffleWriter, FPGAPart[12], Vitis[13]):

● Maintain a bucket for each destination partition to hold records going there.

● Hard to implement growable buckets without malloc-like dynamic memory allocation 

in hardware accelerators.

● Static bucket allocation presents linear scaling between capacity and #partitions.

● Parallelism exploitation leads to another shuffle problem.

Sort (SortShuffleWriter):

● Sort the records by their assigned destination partition ids.

● Fixed resource requirement for different #partitions.

● Further optimization of only sorting record pointers rather than full records. Gather the 

records with sorted record pointers later using customized scratchpads.



Putting it together: PSACS uArch
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FSM: Controls the shuffle process.
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FSM: Controls the shuffle process.

Reader: Manages a customized 

scratchpad as a on-chip random 

access buffer for the table data.
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Putting it together: PSACS uArch
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FSM: Controls the shuffle process.

Reader: Manages a customized 

scratchpad as a on-chip random 

access buffer for the table data.

Partitioner: Accepts shuffle keys 

streamed from the reader. Map keys 

via hash to partition ID (PID).
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Reader: Manages a customized 

scratchpad as a on-chip random 

access buffer for the table data.

Partitioner: Accepts shuffle keys 

streamed from the reader. Map keys 

via hash to partition ID (PID).

Sorter: Sorts tuple (PID, RecPtr) from 

Partitioner by PID and stream the 

sorted tuples into Gather.
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Putting it together: PSACS uArch
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FSM: Controls the shuffle process.

Reader: Manages a customized 

scratchpad as a on-chip random 

access buffer for the table data.

Partitioner: Accepts shuffle keys 

streamed from the reader. Map keys 

via hash to partition ID (PID).

Sorter: Sorts tuple (PID, RecPtr) from 

Partitioner by PID and stream the 

sorted tuples into Gather.

Gather: Gathers records from Reader 

by RecPtrs in sorted tuple streams 

through random accessing.



Putting it together: PSACS uArch
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FSM: Controls the shuffle process.

Reader: Manages a customized 

scratchpad as a on-chip random 

access buffer for the table data.

Partitioner: Accepts shuffle keys 

streamed from the reader. Map keys 

via hash to partition ID (PID).

Sorter: Sorts tuple (PID, RecPtr) from 

Partitioner by PID and stream the 

sorted tuples into Gather.

Gather: Gathers records from Reader 

by RecPtrs in sorted tuple streams 

through random accessing.

Writer: Stream records from Gather to 

DRAM, handling DRAM protocol



PSACS implementation
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PSACS VS hand-optimized software

Single PSACS kernel VS single-thread software

5x kernel-level throughput



PSACS VS hand-optimized software

Single PSACS kernel VS single-thread software

5x kernel-level throughput

4-way-system pipeline with single PSACS VS 

32-thread software (Data preparation and 

results writing back to storage included).

~20% higher system-level performance



CPU utilization reduction and overall query speedup

Overall query latency and speedup

20x CPU utilization reduction 23% end-to-end query speedup on average



Related work

Single-node partition acceleration: Both academia[12] and industry[13]. Bucket-

based grouping for single-node is used.

Specific function acceleration in OLAP: Cereal[23] accelerates serialization, 

SortAcc[14] accelerates sorting, CASM[15] accelerates local aggregation.

Network fabric improvement: SparkRDMA[10], SparkPMoF[11].

Software optimization for shuffle: Riffe[8] optimizes storage IO and network 

transfer with special merge policy. Intel proposes in-memory shuffle[24] in a 

disaggregated optane pool.



Summary

We proposed PSACS, the first shuffle accelerator addressing the shuffle 

bottlenecks of the OLAP systems.

● Employs rising computational storage paradigm

● Hardware acceleration through exploitation of multiple levels of parallelism

● Utilizes custom scratchpad for high-speed gathering

PSACS delivers 5x throughput at the kernel level and on average 23% end-to-end 

OLAP query speedup.

See our paper for more PSACS features

● Tiled shuffling tailoring for different levels inside the memarch

● Column-major output for higher compression ratio during fetch


