
PSACS: Highly-Parallel Shuffle Accelerator

on Computational Storage

Chen Zou1, Hui Zhang2, Yang Seok Ki2, Andrew A. Chien1,3

{chenzou@, achien@cs.}uchicago.edu, {w.hzhang86, yangseok.ki}@samsung.com

1Department of Computer Science, University of Chicago
2 Memory Solution Lab, Samsung Semiconductor Inc.

3 Mathematics and Computer Science, Argonne National Laboratory

ICCD 2021 Paper #4

mailto:chenzou@uchicago.edu


Shuffle enables parallelism exploitation for OLAP

pineapple pen

apple pen

pen pineapple 

apple pen

(pen, 1)

(pen, 1)

(pen, 1)

(pen, 1)

(apple, 1)

(apple, 1)

(pineapple, 1)

(pineapple, 1)

(pineapple, 1)

(pen, 1)

(apple, 1)

(pen, 1)

(pen, 1)

(pineapple, 1)

(pine, 1)

(pen, 1)

(pen, 4)

(apple, 2)

(pineapple, 2)

Map

Map

Map

Map

Map

Map

N
o

d
e

 0
N

o
d

e
 1

N
o

d
e

 2

Shuffle



However, Shuffle may be a bottleneck

F
e

tc
h

ill
u

s
tr

a
ti
v
e

 h
a

s
h

: 
h

(w
o

rd
) 

=
 w

o
rd

.l
e

n
g
th

()
 /

 3
 

P
a

rt
it

io
n

2: (pineapple, 1)

0: (pen, 1)

0: (pen, 1)

2: (pineapple, 1)

1: (apple, 1)

0: (pen, 1)

1: (apple, 1)

0: (pen, 1)

G
ro

u
p

0: (pen, 1)

0: (pen, 1)

1: (apple, 1)

2: (pineapple, 1)

0: (pen, 1)

2: (pineapple, 1)

0: (pen, 1)

1: (apple, 1)

(pineapple, 1)

(pen, 1)

(apple, 1)

(pen, 1)

(pen, 1)

(pineapple, 1)

(apple, 1)

(pen, 1)

(pen, 1)

(pen, 1)

(pen, 1)

(pen, 1)

(apple, 1)

(apple, 1)

(pineapple, 1)

(pineapple, 1)

Shuffle

Most challenging!

Cache thrashing. Spills



Shuffle may take ⅓ latency of an OLAP query

TPC-H with scaling factor 1000.

4 nodes running Spark 3.0.1 

connected with 1Gbps ethernet. 

CPU time collected with JVM-

profiler[6].

C
P

U
 T

im
e

 r
a
ti
o

All 22 TPC-H queries



PSACS: Highly-Parallel Shuffle Accelerator

on Computational Storage

First shuffle acc on computational storage.

● Confines shuffle traffics in storage

● Liberates CPU and memory

PSACS microarchitecture exploits:

● Task, subtask and data-level parallelism

● Custom scratchpad for efficient gathering

PSACS achieves acceleration benefits:

● 5x kernel-level shuffle throughput

● 23% OLAP query speedup on average

CPU

R
D

D

S
e
ria

liz
e

S
p
ill

M
e

rg
e

Mem

CPU
R

D
D

S
e
ria

liz
e

Mem

Liberate

CPU/Mem

SSD
PSACS

SmartSSDxN xN

Shuffle

Shuffle



PSACS partition approach: Hash

We opt for hash-based partition 

for its generality.

‘evenness’ rather than ‘collision 

resistance’ is the key here.

We apply a variant of fold hash 

that additionally zig-zag the 

input. 

b00 b01 b02 b03 b04 b05 b06 b07 b08 b09
⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕

b19 b18 b17 b16 b15 b14 b13 b12 b11 b10
⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕

b20 b21 b22 b23 b24 b25 b26 b27 b28 b29

॥ ॥ ॥ ॥ ॥ ॥ ॥ ॥ ॥ ॥

h00 h01 h02 h03 h04 h05 h06 h07 h08 h09



PSACS group approach

Bucketing (BypassMergeSortShuffleWriter, FPGAPart[12], Vitis[13]):

● Maintain a bucket for each destination partition to hold records going there.

● Hard to implement growable buckets without malloc-like dynamic memory allocation 

in hardware accelerators.

● Static bucket allocation presents linear scaling between capacity and #partitions.

● Parallelism exploitation leads to another shuffle problem.



PSACS group approach

Bucketing (BypassMergeSortShuffleWriter, FPGAPart[12], Vitis[13]):

● Maintain a bucket for each destination partition to hold records going there.

● Hard to implement growable buckets without malloc-like dynamic memory allocation 

in hardware accelerators.

● Static bucket allocation presents linear scaling between capacity and #partitions.

● Parallelism exploitation leads to another shuffle problem.

Sort (SortShuffleWriter):

● Sort the records by their assigned destination partition ids.

● Fixed resource requirement for different #partitions.

● Further optimization of only sorting record pointers rather than full records. Gather the 

records with sorted record pointers later using customized scratchpads.



Putting it together: PSACS uArch

FSM

Writer

Scratchpad

A

X

I

Indexer

K

A

X

IV
1

V
2

V
3

K

A

X

I

Reader

Partitioner

(Hash)

AXIS

Data-level

Parallelism

Subtask

parallelism

Gather

*R
P

*R P

Sorter

AXIS

AXIS

A
X
I
S

P
K

V
1

V
2

V
3



Putting it together: PSACS uArch

FSM

Writer

Scratchpad

A

X

I

Indexer

K

A

X

IV
1

V
2

V
3

K

A

X

I

Reader

Partitioner

(Hash)

AXIS

Data-level

Parallelism

Subtask

parallelism

Gather

*R
P

*R P

Sorter

AXIS

AXIS

A
X
I
S

P
K

V
1

V
2

V
3

FSM: Controls the shuffle process.



Putting it together: PSACS uArch

FSM

Writer

Scratchpad

A

X

I

Indexer

K

A

X

IV
1

V
2

V
3

K

A

X

I

Reader

Partitioner

(Hash)

AXIS

Data-level

Parallelism

Subtask

parallelism

Gather

*R
P

*R P

Sorter

AXIS

AXIS

A
X
I
S

P
K

V
1

V
2

V
3

FSM: Controls the shuffle process.

Reader: Manages a customized 

scratchpad as a on-chip random 

access buffer for the table data.

1
P

e
n

1
P

e
n

A
p

p
le

1

W
0

W
1

W
2

1



Putting it together: PSACS uArch

FSM

Writer

Scratchpad

A

X

I

Indexer

K

A

X

IV
1

V
2

V
3

K

A

X

I

Reader

Partitioner

(Hash)

AXIS

Data-level

Parallelism

Subtask

parallelism

Gather

*R
P

*R P

Sorter

AXIS

AXIS

A
X
I
S

P
K

V
1

V
2

V
3

FSM: Controls the shuffle process.

Reader: Manages a customized 

scratchpad as a on-chip random 

access buffer for the table data.

Partitioner: Accepts shuffle keys 

streamed from the reader. Map keys 

via hash to partition ID (PID).

1
P

e
n

1
P

e
n

A
p

p
le

1

W
0

W
1

W
2

1

Pen

Pen
Apple

02 1
00 12



Putting it together: PSACS uArch

FSM

Writer

Scratchpad

A

X

I

Indexer

K

A

X

IV
1

V
2

V
3

K

A

X

I

Reader

Partitioner

(Hash)

AXIS

Data-level

Parallelism

Subtask

parallelism

Gather

*R
P

*R P

Sorter

AXIS

AXIS

A
X
I
S

P
K

V
1

V
2

V
3

FSM: Controls the shuffle process.

Reader: Manages a customized 

scratchpad as a on-chip random 

access buffer for the table data.

Partitioner: Accepts shuffle keys 

streamed from the reader. Map keys 

via hash to partition ID (PID).

Sorter: Sorts tuple (PID, RecPtr) from 

Partitioner by PID and stream the 

sorted tuples into Gather.

1
P

e
n

1
P

e
n

A
p

p
le

1

W
0

W
1

W
2

1

Pen

Pen
Apple

02 1
00 12

0

1
2

0

1
0

3



Putting it together: PSACS uArch

FSM

Writer

Scratchpad

A

X

I

Indexer

K

A

X

IV
1

V
2

V
3

K

A

X

I

Reader

Partitioner

(Hash)

AXIS

Data-level

Parallelism

Subtask

parallelism

Gather

*R
P

*R P

Sorter

AXIS

AXIS

A
X
I
S

1
P

e
n

1
P

e
n

A
p

p
le

1

Pen

Pen
Apple

02 1
00 1

0

1
2

P
K

V
1

W
0

W
1

W
2

V
2

V
3

P
e

n

A
p

p
le

P
e

n
11 1

W
0

W
1

W
2

01 0
0

1
0

1

2
3

4

FSM: Controls the shuffle process.

Reader: Manages a customized 

scratchpad as a on-chip random 

access buffer for the table data.

Partitioner: Accepts shuffle keys 

streamed from the reader. Map keys 

via hash to partition ID (PID).

Sorter: Sorts tuple (PID, RecPtr) from 

Partitioner by PID and stream the 

sorted tuples into Gather.

Gather: Gathers records from Reader 

by RecPtrs in sorted tuple streams 

through random accessing.



Putting it together: PSACS uArch

FSM

Writer

Scratchpad

A

X

I

Indexer

K

A

X

IV
1

V
2

V
3

K

A

X

I

Reader

Partitioner

(Hash)

AXIS

Data-level

Parallelism

Subtask

parallelism

Gather

*R
P

*R P

Sorter

AXIS

AXIS

A
X
I
S

1
P

e
n

1
P

e
n

A
p

p
le

1

Pen

Pen
Apple

02 1
00 1

0

1
2

P
K

V
1

W
0

W
1

W
2

V
2

V
3

P
e

n

A
p

p
le

P
e

n
11 1

W
0

W
1

W
2

01 0
0

1
0

5

1

2
3

4

FSM: Controls the shuffle process.

Reader: Manages a customized 

scratchpad as a on-chip random 

access buffer for the table data.

Partitioner: Accepts shuffle keys 

streamed from the reader. Map keys 

via hash to partition ID (PID).

Sorter: Sorts tuple (PID, RecPtr) from 

Partitioner by PID and stream the 

sorted tuples into Gather.

Gather: Gathers records from Reader 

by RecPtrs in sorted tuple streams 

through random accessing.

Writer: Stream records from Gather to 

DRAM, handling DRAM protocol



PSACS implementation

F
la

s
h

 a
rra

y

CTRL

FPGA

SmartSSD

SSD

DRAM

P
C

IeReduced

Traffic

CPUDRAM

FPGA

DRAM

Xilinx KU15

Sorter

Bonsai[20] Merge Sorter



PSACS VS hand-optimized software

Single PSACS kernel VS single-thread software

5x kernel-level throughput



PSACS VS hand-optimized software

Single PSACS kernel VS single-thread software

5x kernel-level throughput

4-way-system pipeline with single PSACS VS 

32-thread software (Data preparation and 

results writing back to storage included).

~20% higher system-level performance



CPU utilization reduction and overall query speedup

Overall query latency and speedup

20x CPU utilization reduction 23% end-to-end query speedup on average



Related work

Single-node partition acceleration: Both academia[12] and industry[13]. Bucket-

based grouping for single-node is used.

Specific function acceleration in OLAP: Cereal[23] accelerates serialization, 

SortAcc[14] accelerates sorting, CASM[15] accelerates local aggregation.

Network fabric improvement: SparkRDMA[10], SparkPMoF[11].

Software optimization for shuffle: Riffe[8] optimizes storage IO and network 

transfer with special merge policy. Intel proposes in-memory shuffle[24] in a 

disaggregated optane pool.



Summary

We proposed PSACS, the first shuffle accelerator addressing the shuffle 

bottlenecks of the OLAP systems.

● Employs rising computational storage paradigm

● Hardware acceleration through exploitation of multiple levels of parallelism

● Utilizes custom scratchpad for high-speed gathering

PSACS delivers 5x throughput at the kernel level and on average 23% end-to-end 

OLAP query speedup.

See our paper for more PSACS features

● Tiled shuffling tailoring for different levels inside the memarch

● Column-major output for higher compression ratio during fetch


