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Abstract—Processor datapaths grew from 4 to 512 bits
via Single-Instruction-Multiple-Data (SIMD) parallelism. SIMD
applies the same operation to multiple values, which increases
performance and reduces the instruction count. However, these
evolvements do not provide support for variable-width values, so
programmers ‘pad’ values to align to outliers, wasting the upper
bits with zeros in both registers and datapath.

We propose VarVE, a vector instruction set extension built
upon the state-of-the-art vector-length agnostic SIMD instruction
set: ARM SVE. VarVE provides native support for variable-width
values within a vector, avoiding padding waste, thus making
better use of the SIMD datapath. VarVE’s design enables a
flexible strip mining model with a variety of optimizations.

Evaluation of VarVE shows 60x speedup over ARM in kernels
with element packing and unpacking, and 1.3x - 5.4x speedup
over SVE for pure-compute filtering in TPC-H benchmarks.
VarVE also achieves 2x speedup on a neural network inference
task. All these results exemplify VarVE’s general ability to
improve datapath and memory system efficiency.

Index Terms—SIMD, VLA SIMD, Variable-width values

I. INTRODUCTION

Datapaths in major microprocessors evolved from 4
bits [1] to 512 bits [2] over the past semicentury, driven
by the continuous need of performance improvement. The
evolvement includes both the growth of bitwidth for each
value from 4 bits [1] to 64 bits [3], and the growth of
the number of values processed at a time, enabled by the
Single-Instruction-Multiple-Data (SIMD) [4], [5].

However, 64, the number of datapath bits assigned for each
value, is mostly arbitrary. A real-world value is more diverse
than just 64-bit or 32-bit. The diversity usually results from the
biases, precisions and ranges during digitization. For example,
temperature measured by the mercury thermometer or silicon
bandgap sensor [6] can be represented as 7-bit or 12-bit
one-fraction-digit decimals. Credit card limits and transactions
could be represented as 24-bit integers, with one being a cent.
More than half of the datapath and registers are wasted on
zeros when computing on these data.

There has been little effort or innovation to provide
efficient compute support for variable-width values to reduce
the datapath waste. Here, by variable-width values compute
support, we are referring to the mechanism to compute over a
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set of values and consume for each value only the number of
bits needed to represent the value. This should not be confused
with datatype innovations, e.g. bfloat16 [7], which make better
use of a fixed number of bits.

This work considers new compute supports dubbed VarVE,
a SIMD Extension that natively computes on Variable-width
Values. The goal is to achieve higher performance and
memory efficiency by allowing more values to be packed
into each datapath cycle or memory operation. And we build
VarVE on top of ARM SVE, a state-of-the-art vector-length
agnostic (VLA) SIMD ISA. The ISA innovatively answers
how to load variable-width values in diverse coding to SIMD
vectors, and how to provide flexible and high-efficiency
compute without leading to the instruction set explosion that
burdens the programmer and the compiler.

The specific contributions of the paper are:
• Characterization and analysis of low datapath efficiency

in existing architectures, failing to adapt to diverse data.
• VarVE: A novel SIMD instruction set extension and its

associated programming model, which provides native
support for variable-width values without padding wastes
aligning to a large outlier, largely improving compute
datapath efficiency on diverse data.

• Evaluation of VarVE using various workloads shows
it achieves 1.3x - 5.4x speedup over ARM SVE, the
state-of-the-art SIMD ISA, with the same datapath width.
Implementation shows that VarVE can be implemented
with similar timing to fixed-width SIMD.

The rest of the paper is as follows. We cover VLA SIMD
background and related work in Section II. Our motivation
is then detailed in Section III, investigating the problems
and challenges of existing SIMDs. The VarVE ISA design
is discussed in Section IV, which we further evaluate in
Section V. The challenges of hardware implementation are
outlined and addressed in Section VI. We summarize and
identify directions for future work in Section VII.

II. BACKGROUND

A. Vector-length agnostic SIMD

Vector-length agnostic (VLA) SIMD ISAs like SVE [5]
and RVV [8], [9] are proposed to address the instruction
duplication issue from SIMD ISA sets with various datapath
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Fig. 1: aX+Y for byte vectors in SVE: an example of VLA

widths (e.g. SSE, AVX, AVX2, then AVX512). In VLA SIMD,
only one instruction is needed for an operation for various
datapath widths. The datapath width (i.e. vector length) is
reported by hardware at runtime. The semantics of each
VLA SIMD instruction (number of elements processed) and
the strip-mining process both follow the runtime-determined
datapath width. Figure 1 shows a VLA example that performs
a linear combination of two vectors x and y with coefficient
a. In each iteration, it loads two vector strips from memory,
performs a vectorized linear combination of the strips and
stores the result back to memory. The program (or compiled
binary) can run on hardware with different datapath widths
(vector lengths), which is reflected by ‘svcntb()’. On hardware
with wider datapath, the vector strips are longer, more
elements processed in one iteration, and fewer iterations.

However, as will be shown in Section III, VLA SIMDs still
suffer from low datapath efficiency.

B. Application-specific Stream Computing Acceleration.

Recent work proposes application-specific acceleration for
stream computing on small values. SparseCore [10] proposed
stream ISA support that abstracts sparse data as streams
of key-value pairs as well as computes on these streams.
Bison-e [11] proposes mechanisms that embed multiple small
values from two streams into two 32b/64b integer respectively,
and carry out regular integer multiplication (a technique called
binary segmentation) to get inner products or convolution of
the two streams. VarVE, in constrast, is a general approach
that provides full SIMD operation support for variable width
values as a VLA SIMD extension. It applies to all kinds of
workloads as will be shown in V.

III. PROBLEM AND APPROACH

A. Observations on Datapath Efficiency

As discussed in Section I, real-world data is diverse, and
much does not need 64 bits to represent. The diversity usually
comes from the biases, precisions and ranges embedded in
the digitization process. Moreover, good programming practice
considers the maximum value that could occur, even as a
possible intermediate result, and type the variable accordingly.
Execution of such programs on a conventional x64 processor
leads to waste in memory traffic and bandwidth, cache capacity
and bandwidth, and ALU, as in Figure 2.

For example, we consider a TPC-H filter [12]. To generate
predicates on an enum column ‘c mktsegment’ (the cardinality

Fig. 2: Wastes (red zeros) from value-datapath mismatch

Fig. 3: Padding wastes both the VecReg and datapath

is five), all 64 bits of the datapath are involved in the compare
instruction when only three bits are doing the essential work,
producing a low datapath efficiency of 4.7%. Ideally, all of the
datapath and register bits would be used for essential compute
and storage. Here, 95% of them are wasted.

SIMD can partially mitigate the problem. MMX [13] was
developed on this exact premise. By grouping a set of 8-bit
values into a 64-bit register, one MMX instruction could apply
the same operation to each value, both increasing performance,
and wasting fewer ALU and register bits. Of course, MMX has
evolved in to a long series of SIMD instruction set extensions
for x86: SSE, AVX, AVX2, AVX-512 [2].

Modern SIMD instruction sets support various vector types,
all with uniform bitwidths b (b ∈ {8, 16, 32, 64}) for each
element. However, they still do not deliver high datapath
efficiency. The primary reason is that programming must be
conservative. When selecting an element type, a programmer
must account for the largest outlier inputs, results, or even
intermediate results, i.e. the worst case, as in Figure 3.
This causes poor efficiency. In our motivating TPC-H filter
example, the predicates need to be applied to the ‘c custkey’
column, which is defined in the schema as 32-bit per value.
As a result, all predicates from the ‘c mktsegment’ column
have to be calculated in 32-bit-per-value vector types in ARM
SVE, achieving 9.4% datapath efficiency.

B. The Problem

The fundamental problem that gives rise to low datapath
efficiency is the software-hardware interface, i.e. the
instruction set, which have been defined around fixed-width
datatypes for more than seven decades. If an instruction set can
only address and describe operations on fixed-width datatypes,
to allow for dynamic ‘fluctuation’ and outliers, an application
(and compiler) has little leeway to select the datatype size
conservatively, producing waste. The more variable the values
in the computation, the greater the waste – in memory, data
movement, and computation. Our objective is to redesign the
software-hardware interface to address this waste.

IV. VARVE ISA DESIGN

The VarVE ISA extension consists of two types of features:
1) efficient packing/unpacking to load/store variable-width
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VarVE-pup

int FRStream(char* pdata, int width, int bits)
int HRStream(char* pdata, char* pdict, int bits)
int VRStream(char* pdata, char* pmeta, int bits)
int pack(svbool t pred, svint<w>t v, int sid)
svint<w>t unpack(int sid)

VarVE-full

int FRStream(char* pdata, int width, int bits)
int HRStream(char* pdata, char* pdict, int bits)
int VRStream(char* pdata, char* pmeta, int bits)
int vpack(vsbool t pred, vsint t v, int sid)
vsint t vunpack(vsbool t pred, int sid, int mb=64)
vadd, vsub, vmul, vdiv Arithmetic OP Variants [15]

Predicated Immediate
Predicated Vectors
Unpredicated Immediate
Unpredicated Vectors

vmax, vmin, vasl, vasr
vand, vorr, veor, vbic
vcle, vclt, vcne, vceq
vcpy, vdup, vindex, vabs

TABLE I: Summary of VarVE instructions

data and 2) efficient computation on variable-width data. In
both cases, these designs leverage and integrate gracefully with
the modern vector-length agnostic (VLA) architectures [5].
Two ISA variants are proposed. VarVE-pup is a minimal
extension that contains only the pack/unpack feature to
allow conventional SIMD easily load variable-width data
for compute. It reflects our best-effort capture of existing
streaming ISA work [11], [14]. VarVE-full is a full
variable-width value extension that not only inherits the
vpack/vunpack support for efficient loading, but also performs
SIMD computation on native variable-width vector type.

A. Efficiently Load Variable-width Values: Pack/Unpack

Data are diverse (ints, strings, enums, codes, etc.). Incoming
values can feature arbitrary bitwidths that are packed or
coded for storage or transfers. Existing SIMD ISAs require
lengthy and complex bit operations to capture a stream of
variable-width values, placing them into a vector register. In
Figure 4, we show an example of unpacking (and loading)
bitpacked values. ARM SVE needs ∼10 instructions to first
generate byte positions for each value, gather the values, and
then do bit operations to mask out the extra bits gathered.

In VarVE-pup, we introduce a pair of universal pack &
unpack instructions to solve this problem (see Table I). They
convert between packed values in a stream and fixed-width
elements in conventional SIMD vectors. An additional
interface to describe input streams is also added, including
fixed-width-value streams (FRStream), variable-width-value
streams (VRStream) and Huffman streams (HRStream), as
well as FWStream, VWStream, HWStream for outputs.

VarVE-pup instructions significantly reduce the instruction
counts through ISA support as shown in Figure 4, to
one instruction per iteration. And it enables performance
improvement through microarchitecture optimizations like
prefetch and preunpack [14]. Once a stream is specified with
stream description instructions, unpacking could happen in the
background and hide its latency among computation. Further,
VarVE-pup instructions remove the roadblocks (performance
penalty of loading) of using non-padded variable-width value
format in storage and transfers, improving memory system
efficiency compared to using padded fixed-width format.

Fig. 4: SVE vs VarVE-pup: unpack and load the bitpacked

B. Efficiently Compute on Variable-width Values: Native
Vector Support

In VarVE-full, we leverage the high-level view pioneered by
VLA SIMD (SVE), that abstracts away datapath width1 (see
Section II-A). The key is that with the VLA approach, the
same binary program works with different hardware datapath
widths; the number of vector elements for each iteration is
determined at runtime. The datapath width still determines
performance, but it is no longer embedded in the programs.

A new vector type where the bitwidth of each element in
a single vector can vary, as shown in Figure 5, is added.
This allows denser packing of variable-width values into
vector registers. In terms of architectural states, variable-width
value vectors reuse the existing vector registers. New vector
metadata registers are added, one metadata register per vector
register, storing the bitwidth of each element for the associated
variable-width values vector. Vector metadata registers are
read/written when carrying out new vector operations defined
below. No standalone instruction can read/write/change them.

Further, new operations on the new vector type are added, as
summarized in the last five rows of Table I. These instructions
still carry out element-wise operations between vectors.
Though, the number of output vector elements produced by
each instruction is dynamic, as shown in Equation 1. The
rule reflects that output elements cannot be more than the
input elements in either operand. And if there is backpressure
when adapting corresponding input vectors to the datapath to
compute the output vectors, the number of output elements
may further decline. This dynamic property gracefully hides
into the VLA scheme, as will show in Section IV-C.

Eop(u,v) <= min(Eu, Ev) (1)

In VarVE-full, the pack & unpack instructions are upgraded
as vpack & vunpack to target variable-width-value vectors.
vunpack adds a scalar argument mb and a predicate argument

1This is a marked contrast to AVX or Neon where the datapath width is
explicit in the ISA, and embedded in every program.
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Fig. 5: Native support for variable-width values in VarVE-full

Fig. 6: Strip size is determined at the end of the iteration

pred. Argument mb constrains the maximum width vector
elements can grow to (default is 64b). This maximum
constraint is transitively applied through VarVE-full arithmetic
operations. If the result of an operation is larger than the
maximum, normal SIMD overflow behavior occurs. The pred
argument is needed for an optimization (Section IV-D).

The benefits of VarVE-full vector type and instruction
design are twofold. First, VarVE-full avoid VecReg wastes on
padded values. Second, dynamic adapting of value vectors to
the datapath allows increased data parallelism by putting more
vector elements through the datapath each cycle.

C. VarVE-full Strip Mining: Lockstep Advancing

The management of strip mining pacing is the responsibility
of any VLA architecture. In existing VLA SIMDs, the strip
size, i.e. the number of elements processed for one stream each
iteration, is abstracted from the program. It is instead a static
property of implementation hardware, and a runtime constant
in programming. This allows all VLA instructions in the strip
mining loop to advance in lockstep, when processing multiple
streams with element-wise correspondence.

However, in VarVE-full, the strip size is no longer a runtime
constant. the feasible strip size is dependent on the dynamic
size of the values. In principle, the strip size could be different
for each iteration of a loop. Further, the appropriate strip
size may not be determined until the last instruction in an
iteration, as shown in Figure 6, where the effective strip size
is successively constrained by afterwards instructions.

To efficiently determine the maximum feasible strip size,
we introduce the ‘NumE’ misc register. This register is
updated by each of the VarVE-full instructions, using the
min function. After a sequence of VarVE-full instructions in
a strip mine loop, it contains the lowest #elements produced
by any operation, which is exactly the maximum feasible strip
size to deliver lockstep advance, i.e. maintaining element-wise

Fig. 7: TPC-H filtering: SVE vs VarVE-full

correspondence across streams. This ‘NumE’ register is similar
to the ARM NZCV conditional flags [16].

For the overall scheme to work, the semantics of ‘vunpack’
are modified. It now just populates the vector with values
from a stream, but no longer consumes the corresponding
bits. At the end of the iteration, after the strip size/advance
is determined, new ’crstream’ instructions would be called
to advance the stream, consuming bits representing ‘NumE’
values, as shown at the end of Figure 7.

D. Masking Optimization

Figure 7 provides a concrete example of VarVE-full lockstep
strip mining and its comparison with existing SVE strip mining
on a filter kernel from the TPC-H benchmark [12]. It also
exemplifies a new optimization opportunity in VarVE-full
which we call ‘Masking Optimization’.

One problem with VarVE-full is that one stream with wide
values (in bitwidths) can slow an entire loop. That’s because
the minimum #elements of all vector operations will determine
the rate of progress (lockstep strip size) for the entire loop.
The datapath will be poorly utilized when processing other
lock-stepped narrow-value streams.

We observe that if we have a mask for a slow input stream,
we can accelerate it by pushing the mask into the stream. This
idea is akin to predicate push-down in databases. VarVE-full
allows the mask to be supplied to the vunpack instruction (as
in Figure 7 for v c custkey) to transform unneeded values
to zeroes, such that they consume neither vector register bits,
nor datapath bits in later computation. This optimization would
produce larger strip sizes and thus higher datapath efficiency.

This optimization is particularly useful when mask/filtering
could be calculated from input streams with narrower (on
average) values, and then the mask is applied to the unpacking
of streams with wider values. With masking optimization,
the reduction of strip size during instructions operating wider
values could be smaller or even zero.
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Fig. 8: Compilation and simulation infrastructure

In fixed-width-element ISAs (SVE, VarVE-pup), masks
cannot improve datapath efficiency the same way. The masked
values still have to take up the same #bits to keep the
element boundary unchanged for datapath computation. Only
in variable-width vector element ISA like VarVE-full, where
the element boundaries are relaxed to not to align to a fixed
bitwidth, can we reduce the masked elements’ bit consumption
to zero and improve datapath efficiency.

V. EVALUATION

A. Methodology

a) Modeling and Software Infrastructure: Gem5 [17] is
extended with VarVE instructions as shown in Figure 8. Gem5
ARM-Ex5 core model [18] is employed as the performance
model. The memory hierarchy is 8-way 32KB L1I, 8-way
32KB L1D, 16-way 256KB L2, all with 64B cache blocks and
a DDR4-4800 16GB DRAM. Since most of our workloads
feature streaming accesses [19], caches have little impact.
Further, we added intrinsic support (for C/C++) and code
generation for VarVE instructions to LLVM, occupying unused
opcodes in the ARM SVE encoding space.

b) ISA Variants: Four ARM variants, AArch64 Scalar,
SVE, VarVE-pup, VarVE-full are evaluated. The datapath
widths (i.e. vector length) of three SIMD variants are all
256 bits. To recap, VarVE-pup is a partial extension that
adds only the pack/unpack instructions that converts between
packed streams and conventional fixed width vectors (as
in Section IV-A), and serves as our best-effort capture
of existing streaming ISA [11], [14]. VarVE-full adds
the full-fledged vector support of variable-width values.
VarVE-full’s performance model includes the hardware
characteristics as discussed in Section VI. There is an
additional pipeline stage and alignment ceiling for the
alignment process in EAU (Section VI-B).

c) Workloads: Various computation kernels (many from
PolyBench [20]), database analytics filters from TPC-H [12],
and neural network inference to show VarVE’s generality.

d) Metrics:

• Runtime: Exec time in Gem5 cycle-accurate simulation
• Speedup: Ratio of scalar execution time to that of one

SIMD implementation

Fig. 9: Speedup for different kernels (vs. Scalar)

B. Various Computation Kernels

In Figure 9, we show the speedups for each kernel of three
SIMD variants, compared to the scalar implementation.

In the bitpacking evaluation, two TPC-H columns ‘p brand’
and ‘o orderdate’ which are 8-bit and 32-bit unpacked
integers respectively are bitpacked to fixwidth streams of
5-bit or 15-bit per value. Lack of byte-unaligned (bit-level)
scatter support, bitpack implementation in SVE has to
fall back to the Scalar implementation and performance.
VarVE-pup matches this workload well, and achieves 78x
and 26x speedup respectively through vectorization, ISA
and microarchitecture support of latency-hiding write-path
packing. The 3x difference in speedup for two columns
results from data types: More elements can be processed in
one iteration for narrower input type. VarVE-full further
improves the vectorization density for the 15-bit per
value bitpacking, achieving 38x speedup. For the 5-bit per
value bitpacking, even with the same vectorization density
as VarVE-pup, VarVE-full was limited to 60x speedup by
the additional auxiliary work (determine advance and
consume input streams) in the lockstep strip mining.

The other kernels all focus on computations on aligned
elements, rather than data format transformations. VarVE-pup,
with no unpacking and packing acceleration benefits to exploit,
achieves roughly the same speedup with SVE across the board.
Both their speedup comes from a wider datapath (256b vs.
32b), less the auxiliary work of conventional strip mining.
VarVE-full benefits from denser usage of vector register and
vector ALU. Especially on RAID5, where input values only
average at 8 bits, but have to be conservatively handled in
32-bit type in normal SIMDs. VarVE-full can theoretically
compute 4x more elements per instruction than SVE. For
GEMM and Trisolv, the benefits of VarVE-full over SVE are
less. Because the accumulative semantics in the workloads
bring up the average value widths, and there is less datapath
inefficiency to be reclaimed by VarVE-full. Last but not the
least, in a 6-layer neural network for MNIST [21], by applying
masking optimization on the 80% pruned weights, VarVE-full
achieve 2x speedup over SVE. On average, VarVE-full is
1.9x faster than SVE on these compute-oriented kernels.

C. Database Analytics Workloads

Then we evaluate the performance of four ISAs on the
filters in TPC-H data analytics. The workload is studied in the
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Fig. 10: TPC-H filters offload structure

majority of computational SSD work [22]–[26]. As shown in
Figure 10, workloads are collected from the Spark DataSource
interface where various filters [27] are pushed down to data
sources. An ad hoc code generator with functionality similar
to Spark Tungsten is implemented to generate four variants of
filters in C++ with corresponding intrinsics. All input data are
unpacked as types defined by TPC-H schema [12].

Figure 11 shows the speedup over Scalar. VarVE-pup
achieves 1.2x - 7.5x speedup over Scalar, which is 1.5x over
SVE by GeoMean. The performance benefits come from the
elimination of pointer increments. VarVE-full achieves 2.6x
- 15x speedup which averaged (GeoMean) at 5.7x over
Scalar, or 1.3x - 5.4x speedup which averaged (GeoMean)
at 2.1x over SVE. It results from efficient (denser) usage of
the same 256-bit datapath, and also showcases the benefits
of masking optimization as discussed in Section IV-D for
multi-predicate filtering. The values for the rows filtered out
by the first predicate are set to zero during predicated unpack
of the second column, saving VecReg and datapath bits.

D. Summary

Evaluation with workloads of multiple domains including
file system, data analytics and neural network inference
suggest that VarVE delivers significant performance increase.
These improvements arise from greater datapath efficiency
We also performed experiments for VarVE-full that show
both memory traffic reductions and almost-linear speedup
scalability when varying the vector length, but those results
are omitted here due to paper length restrictions.

All in all, evaluation results suggest VarVE-full delivers
speedup via higher datapath efficiency for general computing
workloads. Comparing VarVE-pup with VarVE-full, we find
that even sophisticated pack/unpack is not sufficient to capture
the speedup shown. Native support for variable-width values
is key to the greatest performance benefits.

VI. IMPLEMENTING VARVE-FULL

Our goal of this section is to show that VarVE-full could
be implemented with same clock frequency and limited
area/power increase, compared to conventional SIMD engines.

A. VarVE-full Microarchitecture

A representative SIMD microarchitecture based on previous
work [4], [13], [28]–[30], is shown by orange components in
Figure 12. Generally, the vector register provides operands for
the the vector ALU (VecALU) and accepts the result vector.

Instruction Width (to denote as Max*)
Add/Sub Max(Wa,Wb) + 1
Mul Wa +Wb

Logical Max(Wa,Wb)
Comparison Max(Wa,Wb)

TABLE II: Alignment width, two inputs denoted as a and b

Area (mm2) #Gates Power (mW) CycleTime (ns)
EAU 0.0134 43145 4.68 1.0

TABLE III: Area and power of EAU with SAED14nm

As discussed in Section IV-B, vector metadata registers
are added in VarVE-full, one per vector register, to store
the bitwidth of each vector element in the vector storing
variable-width values. Vector metadata registers accept writes
from VecALU and service reads for VecALU (through EAU,
discussed later in Section VI-B) by VarVE-full instructions.

Since elements are of variable widths, corresponding
elements between two vectors in a vec-vec operation are no
longer aligned. VarVE-full adds an Element Alignment Unit
(EAU) as a VecALU pipeline step as shown in Figure 12.

To provide operations on two elements aligned at an
arbitrary bit position, the vector ALU has to be enhanced,
especially for those operations that involves passing carry
signals across element boundaries, as the element boundaries
are now dynamic with variable-width values.

Further, we require a prefetcher and a packer for vunpack,
and the complement for vpack. Previous work UVE [14] and
Bison-E [11] demonstrated efficient designs for these.

We will now focus on missing pieces: EAU and VecALU.

B. Element Alignment Unit

The Element Alignment Unit (EAU) aligns corresponding
elements from two variable-width-value vectors to compute
in VecALU. The alignment process considers both the actual
(leading-zero stripped) value widths from two vectors and the
width of the result after applying the operation specified by
each instruction. We summarize the rules of alignment width
for different VarVE-full instructions in Table II.

Figure 13 depicts how the EAU is implemented in hardware.
A vanilla Parallel Prefix Sum (PPS) unit is used to calculate
element boundaries from the alignment widths determined
according to Table II. And vector elements from each vector
are aligned on these boundaries in an Aligner, which is mostly
a hardware gather (i.e. per-position MUX) on the input vector.

To reduce circuit implementation cost and circuit latency,
we opt to align vector elements only to rounded-up 8-bit
boundaries. This reduces the circuit scale of the PPS unit
and the MUXes in the Aligner by 8x and 64x respectively,
compared to bit-level alignment. As shown in Table III, We
closed timing of EAU implemented in SystemVerilog at 1GHz
on SAED 14nm [31] via Design Compiler, fast enough as a
pipeline step in a SIMD unit, e.g. in Ara [30]. Please notice
that the round-up of alignment is invisible to the software
programming. Because the strip mining process is already
dynamic depending on the values processed, as discussed in
Section IV-C. The round-up of alignment hides delicately as
if each value is slightly larger. For the same reason, other
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Fig. 11: Speedup for TPC-H filters. TaskName = QueryID + TableNameLeadingCharacter (vs. Scalar)

Fig. 12: Microarchitecture for SIMD and VarVE-full

Fig. 13: Element alignment unit

and future implementations are free to choose finer alignment
granularity without worries of breaking ISA promises. This
is a similar mechanism as the vector-length agnosticism [5],
[8] that allows implementation freedom while maintaining the
compatibility of an already-compiled binary program.

With the EAU, instructions without cross-bit carries can be
implemented with conventional VecALU unchanged. This is
a significant milestone on hardware feasibility of VarVE-full.

C. Dynamic Carry Look-ahead Adder

Adaptations are needed for instructions that have carries
to account for the fact that element boundaries are now
dynamic depending on the sizes of variable-width values in
each vector. As an example, we dive deep into an adder
hardware adaptations here, drawn in Figure 14.

In existing SIMD like AVX or SVE, the carry-lookahead
unit for vector adding should already be runtime-configurable,
because vector element type could be byte, half, word, double

Size/ByteID Carry Logic ‘|’ denotes ‘logical or’
AVX
NEON
SVE
(MSB)

Byte 0
Half G−1

Word G−1 | P−1G−2 | P−1P−2G−3

Double |7i=1G−iΠ
i−1
j=1P−j

VarVE-full

0 0
1 G −1
2 G−1 | P−1G−2

3 G−1 | P−1G−2 | P−1P−2G−3

4 |4i=1G−iΠ
i−1
j=1P−j

5 |5i=1G−iΠ
i−1
j=1P−j

6 |6i=1G−iΠ
i−1
j=1P−j

7 |7i=1G−iΠ
i−1
j=1P−j

TABLE IV: Carry input logic for each 8-bit adder
Pi and Gi are propagate and generate signals [32]

-sized. As a result, there are four different logics to choose
from when calculating the input carry signal for each 8-bit
adder, as summarized in Table IV with the logic for the most
significant byte (MSB) shown. For VarVE-full, this list grows
to eight different variants, with the selection signals being the
in-element ByteIDs for each 8-bit adder position, which are
byproducts of the Element Alignment Unit. Please notice that
the carry at most comes from the 8-bit adder 7 bytes away,
which is the same with conventional SIMD or VLA SIMD
ISAs. As a result, the adaptations should have limited impacts
on the circuit critical path, timing or silicon area/power.

A similar approach can be used for an integer multiplier
in VarVE-full. The key insight is that multipliers are mostly
composed of partial product compression, (i.e. multiple
adders). We exemplify a Wallace-tree-based vector multiplier
as in Figure 15, but a booth multiplier could be adapted
similarly. This multiplier is dynamically partitioned based
on the EAU’s chosen alignment (Table II), keeping the
computation for each pair of operands separate. Here a 5-bit
product (2-bit, 3-bit) is cleanly separated from a 4-bit product
(2-bit, 2-bit). The compression section at the bottom is just
several dynamic carry look-ahead adders we just discussed.

VII. SUMMARY AND FUTURE WORK

To address the low datapath efficiency in SIMD
architectures, we propose VarVE-full, a vector instruction set
extension designed on top of the state-of-the-art vector-length
agnostic SIMD instruction set: ARM SVE. VarVE-full
provides native support to handle variable-width values.

Evaluations suggest that VarVE-full provides on average
2.1x speedup via datapath efficiency improvement over SVE
for workloads across file system, data analytics and neural

7



Fig. 14: Dynamic vector carry look-ahead adder (subscriptions follow the order of significance)

Fig. 15: A portion of a variable-width value vector multiplier
(multiplication of two pairs of values shown)

network inference. Moreover, the memory system could also
benefit from efficient variable-width value support.

Interesting future directions include different encoding
mechanisms in vector metadata register, compilation for
VarVE, and incorporation into out-of-order cores.
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