
VarVE: Bring SIMD Performance
to Variable-width Values

Chen Zou1, * Andrew A. Chien2, 3

Google LLC1, University of Chicago2,*, Argonne National Laboratory3

Scalar Datapath 8b -> 64b

SIMD MMX 64b -> AVX 512b

Processor datapath grows wider

Vector-length-agnostic SIMD: Runtime VLEN

Vector-length-agnostic SIMD: Runtime VLEN

The wider the VLen discovered at runtime, the longer the strip, the fewer iterations.

Width of each element in the vector is uniformly b, b ∈ {8, 16, 32, 64}.

However… Values More Diverse than 32/64b

Credit card transactions: 1b-24b

42.56 = 13’b1000010100000 / 100

Silicon thermometer: 1b-15b

37 = 6’b101001

bias

precision

range

Digitalization

As a Result… Datapath Efficiency is Low

Wastes on padding zeros

in regs, caches, memory …

As a Result… Datapath Efficiency is Low

Wastes on padding zeros

in regs, caches, memory …

And ALU!

SIMD, vector elements of 64 bits

Bison-E, pack two vector of narrow values respectively into two scalars

Binary segmentation: Scalar multiplication === Vector IP/LC concatenated

BFloat and the other narrower FP formats make better use of bits.

Limitations:

Cannot support general compute for diverse values. Cannot provision for outliers.

Programmers pad to 32b/64b to be safe for outliers. Still poor datapath efficiency.

Recent work addresses a portion of issues

1. Efficient packing/unpacking (P/UP) to load/store variable-width values
2. Efficient direct computation on variable-width values

Build on and integrate gracefully with vector-length agnostic SIMDs.

VarVE: Variable-width Value Vector Extension

Efficiently Load/Store VarWidth Values: P/UP
// Instruction to declare a stream
int FRStream(char* pdata,
int width, int bits)

// load a vector from the stream
svint<w>t unpack(int sid)

FWStream and pack for store.

HR/WStream for Huffman etc.

Our capture of BisonE + UVE

Efficiently Load/Store VarWidth Values: P/UP
// Instruction to declare a stream
int FRStream(char* pdata,
int width, int bits)

// load a vector from the stream
svint<w>t unpack(int sid)

FWStream and pack for store.

HR/WStream for Huffman etc.

Our capture of BisonE + UVE

Efficiently Compute on Variable-width Values

Native VarWidth Vector

Denser packing of values

Metadata to mark width of
each element

Efficiently Compute on Variable-width Values

Native VarWidth Vector

Denser packing of values

Metadata to mark width of
each element

Efficiently Compute on Variable-width Values

Element-wise operations between the native VarWidth Value Vectors

With special semantics: runtime-determined #elements produced.

Dynamic Lock-step Strip Mining

StripSize is dynamically determined, by the values, throughout the iteration

Putting it together (filter from TPC-H Q03)

Masking optimization (predicate pushdown)

predicate from fast-progressing stream can be push-down to other streams when vunpack

VarVE: Reasonable Speed & Cost Implementable

Element Alignment Unit, as one
additional pipeline step, aligns
corresponding elements

Dynamic VarVE ALU is
dynamically partitionable,
computing aligned elements

Tune in the paper for details.

VarVE is flexible in supporting
hardware tradeoffs.

Evaluation Methodology

Extended Clang-LLVM with
VarVE intrinsics on top of SVE.

Extended Gem5 for VarVE
instructions as well as
performance modeling the
hardware (incl. restrictions)

Kernel Evaluation Results

P/UP targeted
workloads

Pure-compute workloads, VarVE wins (1.9x over SVE)
via improving datapath efficiency

TPC-H Vectorized Filtering

Observe similar speedups, 2.1x over SVE
Masking optimization was a great contributor.

Conclusions
Sophisticated pack/unpack is not sufficient to capture the general benefits of
supporting variable width values, because ALU datapath is left untouched.

VarVE provides native compute on variable-width values delivering full and general
performance benefits.

Results show VarVE outperforms SVE by 1.9-2.1x on variable width data

Backup

Q&A
Masking optimization: can it be applied to SVE?

Can not apply to SVE. SVE requires fixed and full alignment of elements when
loading the data into vector registers.

It cannot take advantage of the mask and load more values into the register.

Otherwise, misalignment && break ISA definition:

no longer performing element-wise operations.

Q&A
Can VarVE applies in RVV?

All features, including PUP, VarWidth registers, Dynamic Strip mining, mask
optimization can apply to RVV as well.

VarVE was built unpon SVE because of the maturity of the toolchain at the time,
particularly Gem5 has ARM backend with maintenance from ARM engineers.

But I have heard recent support of Gem5 on RVV 1.0.

Q&A
Extension to floating point computations.

It is somewhat a natural extension to support a dynamic ExMY scheme, where x and
y can be dynamically set for each value as required to preserve accuracy. But
definitely complex in circuit implementation.

