
ASSASIN: Architecture Support for Stream Computing to Accelerate
Computational Storage

Chen Zou∗ and Andrew A. Chien∗†
∗ Department of Computer Science, University of Chicago

† Mathematics and Computer Science Division, Argonne National Laboratory
Email: {chenzou@, achien@cs.}uchicago.edu

Abstract—Computational storage adds computing to storage
devices, providing potential benefits in offload, data-reduction,
and lower energy. Successful computational SSD architectures
should match growing flash bandwidth, which in turn requires
high SSD DRAM memory bandwidth. This creates a memory
wall scaling problem, resulting from SSDs’ stringent power and
cost constraints.

A survey of recent computational SSD research shows that
many computational storage offloads are suited to stream
computing. To exploit this opportunity, we propose a novel
general-purpose computational SSD and core architecture,
called ASSASIN (Architecture Support for Stream computing
to Accelerate computatIoNal Storage). ASSASIN provides a
unified set of compute engines between SSD DRAM and the
flash array. This eliminates the SSD DRAM bottleneck by
enabling direct computing on flash data streams. ASSASIN
further employs a crossbar to achieve performance even when
flash data layout is uneven and preserve independence for page
layout decisions in the flash translation layer. With stream
buffers and scratchpad memories, ASSASIN core’s memory
hierarchy and instruction set extensions provide superior
low-latency access at low-power and effectively keep streaming
flash data out of the in-SSD cache-DRAM memory hierarchy,
thereby solving the memory wall.

Evaluation shows that ASSASIN delivers 1.5x - 2.4x
speedup for offloaded functions compared to state-of-the-art
computational SSD architectures. Further, ASSASIN’s
streaming approach yields 2.0x power efficiency and 3.2x area
efficiency improvement. And these performance benefits at the
level of computational SSDs translate to 1.1x - 1.5x end-to-end
speedups on data analytics workloads.

Keywords-computational storage, ssd, stream computing,
memory hierarhcy, memory wall, general-purpose

I. INTRODUCTION

The extraordinary scaling of NAND flash [1] drives
rapid increase in capacity and bandwidth of SSDs. Leading
enterprise SSDs can reach 6.95 GB/s and 900K IOPS [2],
and even consumer SSDs exceed 7 GB/s and 690K IOPS [3].
These performance advances make SSDs essential to high
performance data-intensive applications in data centers. This
shifting performance balance in data centers is driving a
rethink of the relationship between storage and compute to
ensure that compute can keep up with the storage scaling.

One approach is disaggregated storage, as shown in
Figure 1 (center). This approach allows separate scaling
of compute to match the improving flash bandwidths.

Figure 1: Computational storage in data centers

However, this approach drastically increases the compute
requirements for both packet and data processing. Further, the
bandwidth requirement of the interconnect between compute
and disaggregated storage must also scale with the flash
bandwidth, increasing the chance of interconnect becoming a
hot spot in the system. Moreover, disaggregated storage does
not address the aggressive scaling of the flash array inside a
SSD to expose its growing bandwidth currently bottlenecked
by the SSD interface [4].

As a result, recent innovation [5], [6] and research [4],
[7]–[16] explore computational SSDs [17], building on work
dating back to the 1990s [18], [19]. Computational SSD
embeds computation capabilities (E) in SSDs (D) as shown in
Figure 1 (right), enabling early data filtering and computation
scaling to address the SSD interface, interconnect and CPU
compute bottlenecks.

However, matching computing performance to growing
flash bandwidth inside a computational SSD is challenging.
Specifically, performance must be delivered within the
stringent power constraints of an SSD device (less than
5W [3]). In Section III, we show that compute performance
of the typical computational SSD architecture shared by
state-of-the-art general-purpose systems [8], [10], [11],
[13], [20] is limited by the SSD DRAM, akin to the
memory wall in CPUs. As a result, we explore a novel
computational SSD architecture that addresses the memory
wall problem without the loss of generality (independence
of flash data placement and management to support both
conventional SSD read/write requests as well as diverse
computational storage functions concurrently). This novel
general-purpose architecture delivers low-cost, low-power
and high-performance computing inside a SSD.

We start with a broad study of storage offloads, searching
for shared workload properties that could be exploited. The

study shows that many computational storage functions can
be implemented in a stream computing fashion. To exploit
this insight, we propose ASSASIN (Architecture Support for
Stream computing to Accelerate computatIoNal Storage), a
novel general-purpose computational SSD architecture that
enables computation directly on data that are streaming in
and out of flash channels. ASSASIN includes new memory
structures and operations (as an instruction set extension)
that increase computing efficiency on streaming storage data.

Specific contributions of the paper include:
• Analysis of 14 computational storage functions from

22 research studies, showing that most computational
storage functions are feasible with stream computing.

• a novel SSD architecture – ASSASIN – that provides
unified computing engines between the flash array and
SSD DRAM, eliminating the SSD DRAM bottleneck
by enabling general-purpose computing on flash data
streams, while preserving the independence of the flash
translation layer to determine SSD data layout and page
mapping, and thus the generality.

• a novel core architecture – ASSASIN Core – that
efficiently processes flash data chunks, using stream
buffers and a scratchpad memory. The mechanisms and
instruction set provide superior low-latency access at
low-power and enable programs to keep the flash data
out of the SSD cache-DRAM hierarchy.

The paper is organized as follows. We cover the
background on SSD architecture and NAND flash in
Section II. Our motivation is then detailed in Section III,
where the memory wall problem inside computational SSDs is
raised. We conduct workload studies in Section IV for shared
properties to address this memory wall. Our ASSASIN SSD
architecture and ASSASIN core architecture are discussed in
Section V, which we further evaluate in Section VI. Related
work is discussed in Section VII. We summarize and identify
directions for future work in Section VIII.

II. BACKGROUND

A. Solid-state drive architecture

As shown in Figure 2, an SSD is composed of several
flash chips organized in multiple channels, a DRAM chip and
a controller chip. The controller chip comprises a firmware
processor, a host interface controller, a DRAM controller
and one flash controller for each flash channel.

The firmware processor runs the flash translation layer
(FTL). FTL maintains the mapping between logical block
addresses and physical block addresses. A physical block
address specifies a physical location composed of a flash
chip ID and the specific location inside the chip. FTL would
consider both flash’s read/write/erase granularity and the
wear-leveling policy.

The flash chips organized in multiple channels are managed
by the flash controllers, one per channel. The firmware

Figure 2: SSD architecture diagram

Figure 3: NAND flash

processor would issue requests to the flash controller in
charge to access a specific flash chip. And the flash
controller would respond with the required flash page if
needed. The flash chips of the same channel share the
same bus but operate independently. It is firmware and flash
controllers’ responsibility to exploit the operation interleaving
opportunities among the flash chips sharing the same channel,
analogous to the notion of ranks and rank-level parallelism
in the memory system.

There is a DRAM chip in high-performance SSDs serving
as a buffer to store both page data relevant to recent requests
from/to flash controllers and request queues between the
firmware and flash controllers. It also buffers FTL-related
data structures for the firmware.

The host interface controller implements the storage
protocol the SSD would use to communicate with the host,
e.g. SATA, NVMe, etc. The firmware running on the firmware
processor would pull requests and send responses from/to
the host via this host interface controller.

B. NAND flash

We look deeper into the underlying NAND flash internals
and flash interface. This is detailed in Figure 3. NAND
flash is composed of multiple (B in the figure) erase blocks.
Each block is an array of floating-gate MOSFET transistors
sharing the substrate. The transistors on the same row sharing
a selection line form the smallest read or program granularity
which is called an flash page.

The NAND flash interacts with external entities with the
page register through the flash interface. During a page read
process, the selected row is first loaded into the page register,
and the page streams out in a word-by-word (either 8b or 16b)

fashion. During a page write process, data stream into the
page register first, and the page register is used to program
a specific row in the array. ONFI [21] is the standardization
effort on the flash interface. The newest version as of writing
is 5.0 which supports up to 2400 MT/s at the interface.

III. MOTIVATION AND THE PROBLEM

A. A Motivating Example

Let us consider an exemplar function, Filter, offloaded
to computational storage from data analytics workload
to understand the performance characteristics inside
the state-of-the-art general-purpose computational SSD
architecture shown in Figure 4, which is employed in multiple
computational SSD studies [8], [11], [13], [15], [22]–[24].

The function filters tuples based on given predicates on
certain fields. Tuples come from the database (to be specific,
TPC-H lineitem table) stored in the SSD flash array of which
the schema is known and no parsing is needed. This Filter
function features early data reduction benefits when carried
out with computational SSD because unselected data would
not come out of the SSD interface. Further, the function
features tuple-level parallelism, such that it is easy to exploit
scaled-out compute engines inside SSD for high performance.
Each engine could process tuples in a small batch of flash
pages. Thus, this Filter function is suitable for offload to
computational SSDs, and is considered in most computational
storage studies (see Table I).

In the state-of-the-art general-purpose computational SSD
architecture as shown in Figure 4, offloaded functions execute
on compute engines (embedded-class cores). Data is first
staged in the SSD DRAM, and then accessed by compute
engines through the cache-DRAM memory hierarchy for
processing. With a 1GHz in-order RISC-V scalar core on
top of a 32KB 8-way L1 data cache and a 256KB 16-way
L2 cache, the offloaded Filter function runs at 0.63 GB/s.
Simulation done with Gem5 [25] with cache performance
measured through Cacti [26] @ 14nm.

Although the Filter function is light on computing intensity,
the achieved performance is far from the bandwidth of a
flash channel (1.6GB/s or 3.2 GB/s depending on channel
width as defined in ONFI 4.2 [21]). Digging deeper, we find
that the performance is hindered by memory access stalls, as
shown in the cycle decomposition detailed in Figure 5. Even
if we assume the L1 cache is tiny (no extra delay for memory
accesses) but perfect (no cache misses except compulsory).
Compulsory misses and DRAM accesses would still slow
down the performance by three times.

At the SSD level, let us consider the setting of eight
8-bit flash channels delivering 12.8GB/s to maximally
utilize the current and future NVMe over PCIe storage
interface (4 lanes of PCIe 4.0 peak at 8GB/s). The memory
bandwidth requirement of the SSD DRAM is at least
25.6GB/s (read pages from flash controllers into DRAM, and
compute engines read pages from DRAM to perform in-SSD

Figure 4: State-of-the-art computational storage architecture

Figure 5: Cycle decomposition for ‘Filter’

computing). This is shown with blue arrows in Figure 4). The
full requirement will be higher, as there is additional traffic
for writing the in-SSD computing results or firmware DRAM
access needs. These requirements exceed the capabilities of
LPDDR4 DRAM used in current SSD products [3], and even
exceeds a DDR4 DRAM of 16GB/s sustained bandwidth.

B. The Problem

Our example illustrates the memory wall problem inside
a computational SSD. State-of-the-art computational SSDs
read data from the flash array into the SSD DRAM. And
compute elements then process these data on DRAM through
the cache. This makes SSD DRAM bandwidth a critical
performance limit for hosting both compute and flash
traffics. As flash bandwidth scales, so must the computation,
producing increasing demands on DRAM bandwidth and
creating a hot spot in the SSD architecture.

CPU solutions to the memory wall, including caching and
increase on memory parallelism (multi-channel or HBM), do
not readily apply. Caches do not work well for streaming
data due to low reuse. Increased memory parallelism is both
expensive and high-power. These costly CPU approaches are
not viable in the extremely cost and power-sensitive SSD
storage space (backbone of modern data centers).

The computing and memory hierarchy architecture inside
computational SSDs should be lightweight but effective. It
should enable compute engines inside to access data with
low latency, low power, but high bandwidth. It should also
feature moderate consumption of silicon resources. We dive
into the workloads for insights that may help us resolve the
memory wall problem in computational SSDs.

File system Database Other

C
ry

pt
og

ra
ph

y

C
om

pr
es

s

D
ed

up
lic

at
e

E
ra

su
re

C
od

in
g

R
ep

lic
at

e

Fi
lte

r

Se
le

ct

Pa
rs

e

St
at

is
tic

s

W
ri

te
-a

he
ad

L
og

R
ep

la
y

Tr
an

sp
os

e

St
at

is
tic

al
M

od
el

in
g

N
eu

ra
l

N
et

w
or

ks

G
ra

ph
A

na
ly

tic
s

Access [22] x x x
ActiveFlash [15] x x x x x
Aurora [6] x x
Azure [27] x
Biscuit [13] x x
BlockIF [23] x
Caribou [14] x x x x x
CIDR [28] x x
DedupInSSD [29] x
DeepStore [30] x
Glist [31] x
Grafboost [32] x
Ibex [7] x x x
IceClave [20] x x x x
Insider [24] x x x x x
Lepton [33] x
MithriLog [34] x x x x
Query [35] x x
Skyhook [36] x x x x
Summarizer [11] x x x
Thrifty [37] x x
YourSQL [8] x x x

Table I: Functions from different application domains proposed for computational storage

IV. UNDERSTANDING THE WORKLOAD

A. Computational storage offload spectrum

We surveyed the research literature considering offloading
computations either into storage systems, along the storage
links (network/PCIe) or inside storage devices [6]–[8], [11],
[13]–[15], [20], [22]–[24], [27]–[38]. We extract the specific
offloaded functions from each system and summarize them
in Table I. Offload functions are shown as columns and
system/literature names as rows. As we found most functions
considered for computational storage offload are from the file
system or database domain, we further cluster the relevant
functions (columns) together. The table collectively represents
a cross-section of system research on computational storage.

B. Function structure and memory access requirements

Dwelling on computational storage functions, we find that
their implementations all feature streaming access to storage
data and random access to function states.

Starting with file system functions, for Cryptography,
the key schedule is usually determined at the beginning
and thus suitable for storing as function states. Encryption
or decryption would be applied to the input data or
code blocks in a streaming fashion. For compression and
decompression, besides the input data streaming in, indexes to
the dynamic dictionary (i.e. recent history of the compressing
or decompressing data) could be seen as function states.

Table II: Stream computing implementation of computational
storage functions

Streaming Function States
Cryptography Data blocks / Code blocks Keys & GF table
(De)compress Data and history Dictionary indexes
Deduplicate Data blocks Block metadata
Erasure coding Data blocks / Code blocks Galois Field (GF) table
Replicate Data & Replicates –
Filter Tuples Flags
Select Tuples –
Parse Tuples State machines
Statistics Tuples Accumulators
NN Training Training data Model parameters
NN Inference Inference input Model parameters
Graph Analysis Edge list / Vertex list Statistics

Different implementations all have an explicit upper bound
on the history size, which also limits the size of an additional
suffix tree or a hash table for indexing this dynamic dictionary.
Deduplication is similar to compression except the dictionary
being metadata on seen blocks. For erasure coding, it
reads in multiple streams of data blocks and generates
extra coded blocks through various Galois field operations
before streaming out. There are no states but a Galois
field multiplication lookup table used across erasure coding
operations for different blocks.

For database functions like Filter, Select, Parse, these
workloads feature a highly parallel nature where computation
is applied to each row of data independently. As a result,

aside from temporaries and streaming input/output of table
data and results, there are no function states for state transfers.
It is similar for the Statistics function which generates
statistical summaries from data tuples, it only needs additional
accumulators as the function states.

For neural network training and inference, it is sensible for
either a general-purpose processor or an accelerator to keep
weights of the model stationary in fast-and-close memory
(e.g. scratchpads) and streaming in the inference or training
data. And for graph analysis, we can also stream the edge
list or vertex list while performing updates on the statistics
kept in close memory. We summarized how functions are
mapped to stream computing in Table II.

V. ASSASIN DESIGN

Inspired by the shared workload property of streaming, we
design ASSASIN to achieve efficient inline stream computing
on data going in and out of the flash array. ASSASIN keeps
these streams out of the cache-DRAM hierarchy, efficiently
avoiding the SSDs’ memory wall.

A. ASSASIN SSD: Stream computing between flash
controllers and DRAM

The ASSASIN SSD architecture is shown in Figure 6.
Contrast to a regular SSD architecture as shown in Figure 2,
ASSASIN adds scalable stream computing cores (ASSASIN
cores) on the SSD controller chip logically between the
SSD DRAM and the flash array. ASSASIN cores carry out
offloaded functions as inline stream computing on the data
stream (denoted by the blue arrows in Figure 6) between SSD
DRAM and the flash array. Note that flash controllers hide the
electrical complexity of flash, such that ASSASIN cores can
be implemented with standard CMOS VLSI methodologies.

Comparing to the state-of-the-art general-purpose
computational SSD architecture as shown in Figure 4, where
compute engines fetch storage data through a traditional
cache-DRAM memory system only after data are first
staged in SSD DRAM, ASSASIN saves at least half
of the SSD DRAM traffic. Further, function offloads to
computational storage often reduce data (read) or increment
data (write), generating system benefit by decreasing traffic
at the storage interface. ASSASIN allows these functions
to be implemented between SSD DRAM and the flash
array via ASSASIN cores, harvesting these traffic reduction
benefits for the SSD DRAM as well. As a result, ASSASIN
SSD architecture largely reduces SSD DRAM traffic and
bandwidth requirement, addressing the memory bottleneck
issue raised in Section III.

ASSASIN also differs significantly from proposed
application-specific computational SSD architectures
(Figure 7) that add specialized compute engines to each
channel/controller or to each flash die [30], [37], [39].
ASSASIN has two key advantages: First, ASSASIN
flexibly shares compute engines across the SSD with a

Figure 6: ASSASIN SSD (Compare with Figures 4 and 7)

Figure 7: Application-specific computational storage
proposals [30], [37], [39] bind acceleration to channels,
and thus cannot flexibly share compute and compose data
from across the flash array

crossbar interconnect, delivering robust performance even
with uneven data distribution across channels. Second,
ASSASIN’s crossbar interconnect enables aggregating pages
from different channels and presenting them to the compute
engines. This allows FTL placement and management
decisions to be completely independent (and thus, no
customized FTL is required for ASSASIN). As a result,
ASSASIN can support flexible interleaving of read/write
requests that do not exploit computational storage with
computational storage operations.

B. ASSASIN core: Efficient Streaming

An ASSASIN core is based on a general-purpose core (like
the firmware processor) but extends it in following aspects.

Hybrid hierarchy for inline streaming. Each ASSASIN
core employs a hybrid memory hierarchy consisting of
input/output streambuffers, a scratchpad and a cache, as
shown in Figure 8. Input and output streambuffers are for
low-latency storage stream access. Scratchpad is tightly
integrated with core pipeline and thus offers low-latency
random access to function state. The cache which is further
backed by SSD DRAM is for holding data structures larger
than scratchpad’s limit (i.e. a fallback capacity memory).

Stream buffer under a microscope. As drawn in Figure 8,
a stream buffer can hold up to S streams. For each stream,
there is a circular buffer with the capacity of P flash pages.
Here, P and S are both microarchitecture parameters. There
are two pointers on each circular buffer, Head and Tail, which
are both control status registers (CSR) of an ASSASIN core.
Head points to a core’s current position on the stream. The
word at the Head position could be easily prefetched into

Table III: Instruction set extension for stream access and management

Instruction Description Instruction format [31:0]

StreamLoad Hangs if empty, i.e. IHead[rs1] == ITail[rs1]. Otherwise:
R[rd] = IStream[rs1][IHead[rs1]], IHead[rs1] += width unused[11:0] rs1[4:0] width[2:0] rd[4:0] opcode[6:0]

StreamStore Hangs if full, i.e. OHead[rs1] + 8 > OTail[rs1]. Otherwise:
OStream[rs1][OHead[rs1]] = R[rs2], OHead[rs1] += width unused[11:5] rs2[4:0] rs1[4:0] width[2:0] unused[4:0] opcode[6:0]

ReadIStream R[rd] = IStream[rs1][ITail[rs1] - R[rs2]] unused[6:0] rs2[4:0] rs1[4:0] width[2:0] rd[4:0] opcode[6:0]
ReadOStream R[rd] = OStream[rs1][OHead[rs1] - R[rs2]] unused[6:0] rs2[4:0] rs1[4:0] width[2:0] rd[4:0] opcode[6:0]

Figure 8: ASSASIN core

the core pipeline, allowing low-latency access. The Tail CSR
acts as a doorbell register to be used by the SSD firmware.
The firmware would update (advance) this Tail register to let
an ASSASIN core know that new data are fetched into the
circular buffer, ready to be processed.

Instruction set extension for streaming. Besides the
CSRs described in previous paragraphs, the ASSASIN core
augments a general-purpose ISA (we use RISC-V [40]
in evaluation) with additional instructions to access (and
automatically manage) input and output streams, which
we summarized in Table III. The first two instructions
StreamLoad and StreamStore feature automatic stream pointer
increments (i.e. Header CSR) based on the ‘width’ immediate,
while the latter two have no effects on streambuffer pointers.

C. Flexible interconnect: scalable compute

We architect ASSASIN to be scalable with the flash
array bandwidth through pooling cores at the SSD-level
connected with a crossbar interconnect. This allows a
flexible N:M pairing (as the ‘N’ and ‘M’ in Figure 6),
between the ASSASIN cores and flash channels to scale out
compute performance, as opposed to the fixed 1:1 pairing
for channel-level compute engines [30], [37].

One may wonder whether ASSASIN is just shifting the
traffic and bandwidth requirements from the SSD DRAM to
the interconnect. The insight here is that the interconnect and
stream buffers are streaming-oriented (small and restrictive
thus allowing optimizations). They can be scaled to high
bandwidth at much lower power when compared with the
NV-DDR [21] facility that transfer pages from channels to the
SSD DRAM (huge and random accesses). This advantage
is the root of the system efficiency of ASSASIN. As a
confirmation, a 16-bit per input/output lane, 16x16 crossbar
is implemented as the interconnect in SystermVerilog. It
easily closes timing at 2GHz with 14nm SAED library and
is only one eighth of a core in silicon area (see Section VI-G).

Figure 9: Software stack extensions for ASSASIN

Figure 10: ASSASIN core management FSM in firmware

D. ASSASIN Programming Model

Software stack extensions. Generally, computational SSD
requests are specified in the form of ‘(compute, pData,
List[List[LPA]])’. ‘compute’ represents a stream computing
function, the specification of which is detailed in the third
part of this subsection. ‘pData’ is a host pointer to either
the input data for write-path computational SSD requests
the results of which would be writing to storage, or the
destination to store the results for read-path computational
SSD requests. The 2-dimensional array specifies the logical
page addresses (LPA) that the output stream(s) of a write-path
offloaded function should be written to or that form the input
stream(s) for a read-path function. And the size of the outer
dimension corresponds to the number of input/output streams.
A computational SSD request would be wrapped as a new
NVMe command ‘scomp’, as shown in Figure 9.

If upper-layer applications would rather specify compute
inputs in List[List[objects]], a storage engine would be
responsible of transforming that in to List[List[LPA]]. This
is the original responsibility a storage engine (a file system
or a DBMS storage engine) would assume even without
computational storage, so no changes are required here.
Further, this is where task decomposition would take place
to exploit the task-level parallelism through the multiple
ASSASIN cores at the SSD-level. Large compute requests

Listing 1: ‘compute’ specified as a function
void compute (char * s c r a t c h p a d) {

whi le (t r u e) { / / An i t e r a t i o n p r o c e s s e s one o b j e c t , e . g . a t u p l e .
char i n p u t = StreamLoad (0 , 1) ; / / I n S t r e a m I d == 0 , w i d t h == 1 .
char o u t p u t ;
/ / Compute on i n p u t or f e t c h more da ta from i n p u t s t r e am t o produce o u t p u t .
/ / Maybe a l s o use s c r a t c h p a d i n t h e p r o c e s s .
/ / . . .
S t r e a m S t o r e (0 , 1 , o u t p u t) ; / / Ou tS t reamId = 0 , w i d t h = 1 .

} / / The loop ends when StreamLoad hangs , i . e . i n p u t s t r e am i s e x h a u s t e d .
/ / Firmware would r e s e t ASSASIN core (PC & p i p e l i n e) b e f o r e n e x t compute r e q u e s t s t a r t s .

}

can be decomposed into multiple smaller ones with consistent
splitting of each object/LPA stream.

ASSASIN core management in the firmware. Following
the insights of control plane and data plane separation [24],
the firmware processor (as shown in Figure 6) runs firmware
(i.e. the control plane) independent of compute-oriented
ISA/uArch innovations employed by ASSASIN cores.
Compared to conventional SSDs, the firmware is extended
with the capability of managing ASSASIN core resources.
This includes schedule stream computing on any ASSASIN
core and schedule page read and write to/from any
input/output streambuffer (ISB/OSB).

As shown in Figure 10, the firmware periodically
checks control status registers (Head/Tail for each ISB and
OSB) of each ASSASIN core, performing state transitions
(hanging avoids overflow) and schedules pages in and out
streambuffers. This is where the construction of streams from
pages at specified LPAs in computational storage requests
(see the first part of this subsection) takes place. ASSASIN
cores only process streams, without the need of knowing any
flash array data layout or LPAs (preserving generality). The
management process is similar to that of in-DRAM buffers
which firmware originally assumes, thus no new challenges
are involved.

Specify streaming ‘compute’. ‘compute’ needs to be
written in a streaming fashion, as shown in Listing 1. It reads
from the input data stream(s) using StreamLoad instructions,
performs required computation and appends output to the
output data stream(s) via StreamStore instructions.

For existing applications, offload functions will in
general need to be rewritten in a streaming fashion with
ASSASIN ISA extension instructions (wrapped in intrinsics
for high-level programming languages). However, compiler
support to automate this task is feasible via automatic
streaming access pattern identifications [41].

VI. EVALUATION

We simulate several computational storage kernels and
full-system TPC-H data-analytics pipelines and compare
ASSASIN against state-of-the-art SSD architectures.

Figure 11: Hybrid simulation infra with Gem5 and MQSim

Figure 12: Compstor-accelerated analytics pipelines

A. Methodology

Configurations. We compare six computational SSDs that
differ in compute engines and their integration in the SSD
architecture, as summarized in Table IV. In other aspects
the SSDs are similar, employing an 8-channel flash array
(each channel has 1GB/s read/write performance), a 2GB
LPDDR5 DRAM [3] (8GB/s effective bandwidth), and a
PCIe Gen4 x4 host interface. In all cases, the host CPU
driving the computational SSD is four-core eight-thread with
32GB main memory.

Compute engines in each SSD (except the UDP, see
Table IV) are eight in-order scalar RISC-V cores with
different memory hierarchies. RISC-V cores are selected
because of the availability of open-source designs (we
use ibex cores [44]) and toolchain [45]. Baseline, as
drawn in Figure 4, represents state-of-the-art general-purpose
computational SSD architecture [8], [11], [13], [15],
[22]–[24], where compute engines fetch data from SSD
DRAM before computing on it. The other variants (Prefetch,
AssasinSp, AssasinSb and AssasinSb$) add varied memory
hierarchies at each core. Prefetch adds a prefetcher from

Table IV: Configurations of in-SSD compute engines

Data Source ISA #Cores Frequency MemArch per Core. 32KB L1I omitted

Baseline DRAM (8GB/s) RISCV32IM 8 1 GHz L1D: 32KB, 8 way, 64B cache line
L2: 256KB, 16 way, 64B cache line

UDP [42] DRAM (8GB/s) UDP ISA 8 1 GHz 256KB scratchpad

Prefetch DRAM (8GB/s) RISCV32IM 8 1 GHz
L1D: 32KB, 8 way, 64B cache line
L2: 256KB, 16 way, 64B cache line
DCPTPrefetcher [43] (best among Gem5 prefetchers)

AssasinSp Scratchpad RISCV32IM 8 1 GHz 64KB scratchpad
64KB I + 64KB O ping-pong scratchpads

AssasinSb Streambuffer RISCV32IM
+Stream ISA 8 1 GHz 64KB scratchpad

64KB I + 64KB O streambuffer (S=8 P=2)

AssasinSb$ Streambuffer
+ Cache

RISCV32IM
+Stream ISA 8 1 GHz 64KB scratchpad, 32KB 8W L1D

64KB I + 64KB O streambuffer (S=8 P=2)

SSD DRAM for latency reduction. There are three ASSASIN
variations. In AssasinSp, conventional Scratchpads are used
to double-buffer storage data in a ‘ping-pong’ fashion.
Storage data is fetched from flash into the ‘pong’ scratchpad,
bypassing the SSD DRAM while the compute engines
process data already in the ‘ping’ scratchpad and vice
versa. AssasinSb employs a Streambuffer which not only
enables direct computation on storage data streams bypassing
SSD DRAM, but also automatically manages the stream
pointers through the core-level stream ISA extension
(Section V-B). AssasinSb$ adds a data cache (backed by
DRAM) for increased flexibility, with graceful degradation if
the scratchpad size is not large enough for offload functions’
needs of random access.

UDP [42], designed to accelerate data analytics, represents
another dimension of computational SSD architectures [7],
[14], [28], [30], [34], [39] where application- or domain-
specific accelerator(s) are employed. A UDP lane computes
using a private scratchpad. The firmware processor copies
data to be processed from SSD DRAM into these scratchpads.

Simulation. We adopt a hybrid simulation methodology
as shown in Figure 11. Gem5 [25] is employed to model
different memory hierarchy configurations and the compute
performance of each. MQSim [46] is used to model flash
performance. By combining one of the best simulators of the
two worlds, the simulation results should be representative.

Gem5 is extended with scratchpad and streambuffer
module [47] that features single cycle access to model
AssasinSp, AssasinSb, and AssasinSb$ configurations. And
the best-performant prefetcher, DCPTPrefetcher [43], in our
benchmark is employed to evaluate Prefetch. At the same
time of the simulation, access to scratchpads or streambuffers
are traced to generate timed page-level IO traces which are
further used as inputs to MQSim. Extended MQSim [48]
simulates SSD internals and calculates the completion of
each IO request, which we use to retime the computing
process simulated by Gem5, i.e. adding additional latency
if a page doesn’t come out of the flash as early as compute

engines modeled by Gem5 first access the specific page.
For UDP, UDPSim [42], the cycle-accurate simulator, is

used instead of Gem5, but the SSD simulation and retiming
by MQSim is the same.

Workload. We first evaluate ASSASIN with four
standalone function offload to a computational SSD: Statistics,
RAID4 erasure coding, RAID6 erasure coding, AES
encryption. Each of these functions is in its own an
application. And we program these functions in C++ through
the programming model we discussed in Section V-D.

Then we consider TPC-H [49], which featured in much
computational storage research [7], [8], [11], [13]–[15], [24],
[36]. Our SparkSQL implementation [50] of TPC-H offloads
Parse, Select and Filter operation through the datasource
API [51] to computational storage simulated with Gem5 [25]
or UDPSim [42]. Here we assume that the storage containing
the TPC-H data would employ systematic coding (as in most
erasure coded systems) so that source data are available
even after coding, and that erasure coding blocks are large,
reducing the boundary overhead (piecing together an object
across SSDs/nodes).

B. Single-function offload

We evaluate the performance of different computational
SSD configurations running Stat (summing a column),
RAID4 and RAID6 erasure coding and AES encryption
over the same 8 GiB data array serialized in binary flatly

Figure 13: Throughput of offloaded standalone functions

Figure 14: Computational SSD’s throughput of offloaded PSF pipeline from TPC-H queries

Figure 15: End-to-End latency. In each cluster: PureCPU, Baseline, UDP, Prefetch, AssasinSp, AssasinSb, AssasinSb$

(No deserialization or parsing is needed). Figure 13 shows
the achieved throughput, with speedups over baseline labeled.

With the best prefetcher from Gem5, Prefetch is effective
on reducing access latency. However, it only brings limited
performance improvement because of the memory wall.
The theoretically required DRAM bandwidth of Stat and
RAID4 exceed what the LPDDR5 DRAM offers (∼ 8 GB/s),
leading to stalls for Prefetch. AssasinSp and AssasinSb
address the memory wall issue through bypassing DRAM
with Ping-Pong scratchpads or streambuffers, which leads
to 1.3x-2.0x speedup for the first three functions and little
to none memory bandwidth requirement. AssasinSb further
outperforms AssasinSp by 10% on these cases with the
stream ISA extension that enables automatic stream pointer
management. AssasinSb and AssasinSb$ achieve the same
performance as function states all fit in the scratchpad.
Effectively the L1D cache provides no benefit (is not
exercised by the program).

Please note that Stat, RAID4, RAID6 and AES are a
sequence of functions with progressively greater computation
intensity (ops per bytes). Generally, ASSASIN gives greater
benefit for less compute-intensive functions, alleviating
a memory bottleneck. As compute intensity increases,
computing becomes the performance bottleneck. But it’s
worth pointing out that by employing acceleration, some
originally compute-intensive functions (e.g. AES-NI for
AES) could become memory-intensive and thus benefit from
ASSASIN.

C. Database function pipeline offload

Now we look at computational SSD offload of a database
function pipeline consisting of Parse, Select and Filter (PSF)
from TPC-H workload with scaling factor 10 (∼10GiB data),
the system architecture of which is shown in Figure 12.
Performance of offloaded functions is detailed in Figure 14.

UDP ISA [42] employs multiway dispatch and instructions
that fuse operations to accelerate branch executions and
unstructured data computation. This is the reason that
UDP achieves on average (GeoMean) 1.3x speedup on
offloaded PSF database function pipeline (this workload is
well supported by UDP ISA specialization) over the Baseline.

On the other hand, we consider the progression of
changes on Baseline’s memory hierarchy while keeping
general-purpose cores. PSF, bottlenecked by the Parse
function, is moderate in terms of compute intensity. Prefetch
achieves small speedup averaging (GeoMean) at 15% by
hiding DRAM latency for accessing storage data. Adopting
the idea of inline computation of storage data streams,
AssasinSp matches UDP’s speedup without UDP’s exotic
ISA customization. This comes from the low latency access
to function states as well as storage data streams. Finally,
both AssasinSb and AssasinSb$ further improve performance
by 18% through the use of streambuffers and the stream
ISA extension that eliminates the address calculations and
pointer management instructions. This is 1.5x - 1.8x higher
throughput than Baseline. The variation in speedup generally
reflects the memory intensity of each offloaded pipeline.

Finally, we look into the overall data analytics performance

Figure 16: Compute performance scales linearly with cores.

Figure 17: Normalized core utilization (left), normalized by
ideal utilization (right).

for all 26 TPC-H queries, which stacks the host compute
latency and computational SSD latency together. We also
include the pure-CPU performance without computational
SSD offload for comparison which essentially represents
disaggregated storage architecture. Figure 15 details overall
latency. Comparing to the Baseline, AssasinSb’s 1.5x - 1.8x
higher performance on in-storage compute translates to 1.1x -
1.5x end-to-end speedup which averages (GeoMean) at 1.3x.
And please notice this is on top of the 1.9x speedup Baseline
already brings over the no-computational-SSD pure-host-CPU
(i.e. disaggregated storage) scenario.

D. Performance scalability

The ASSASIN SSD features an all-to-all interconnect
between ASSASIN cores and flash channels (through flash
controllers) as discussed in Section V-C to enable flexible
performance scaling. Here we evaluate scalability and
whether the crossbar interconnect potentially creates hot
spots at a flash channel or causes ASSASIN cores to stall
and wait for requested storage data. We consider a dummy
workload where each ASSASIN core (AssasinSb variation)
scans each byte of input, using the TPC-H datasets. If input
data is always available, a 1 GHz core achieves 1 GB/s.

Various numbers of ASSASIN cores are considered
to evaluate scalability. Figure 16 shows the achieved
compute throughput of the computational SSD during
scaling. Figure 17 shows the corresponding core utilization
(normalized by the ideal utilization, derived by considering
nominal bandwidth relationships between cores and channels).
As shown, the interconnect allows linear scaling of compute
performance until bounded by flash array throughput (8GB/s

Figure 18: Ext4/MQSim layout combined with Xbar produces
even load across flash channels

Figure 19: Performance sensitivity to skew across channels
(flash data layout)

in total). Cores have high utilization, more than 98%,
reflecting that the flash array and the interconnect deliver
pages in time to keep the cores busy. Further, flash channels
also feature balanced high throughput as shown in Figure 18.
This is because independent FTL (FTL modeled by MQSim
is employed here) already aims to distribute pages evenly
across the channels for better storage performance, separate
from computational SSD considerations.

E. Sensitivity to flash array data layout skew

We further evaluate ASSASIN’s (AssasinSb variation)
performance sensitivity to flash array data layout skew, which
is defined as (Di denotes the amount of the to-be-processed
data in the i-th channel):

Skew =
1

n−1
maxi(

Di

avgi(Di)
) Skew ∈ [0,1]

ASSASIN with the SSD-level crossbar interconnect to
redistribute flash data to compute engines is compared
with the alternative architecture (Figure 7) from
application-specific computational storage [30], [37],
[39]. Ignoring FTL generality issues of the alternative
architecture discussed in Figure 7 and Section V-A,
ASSASIN cores are switched in at each channel to perform
channel-local compute. Four layouts with varied skew for
requested data are evaluated (from low skew (Skew=0.25)
to extreme skew (Skew=1)) in additional to the no skew

Figure 20: Timing for ASSASIN MemArch extensions (SB
= Streambuffer, SP=Scratchpad)

Figure 21: Throughput after timing adjustment (TPC-H is
GeoMean across queries))

senario. Respective performance normalized to no skew one
are shown in Figure 19.

The two clusters of bars show that the crossbar
architecture consistently outperforms the channel-local
compute architecture in the presence of skew. Further as
skew increases the benefits increase to as much as 8-fold.

Within the XBar cases, for flash-read limited functions
like Stat, uneven layout aggravates the storage read
bottleneck, and XBar-based global compute helps less. But
for compute-limited functions like RAID6, TPC-H and AES,
XBar-based global compute can source pooled compute
engines effectively for the data read out from the most-skewed
channel, matching the overall throughput with that of the
even data layout scenario.

We conclude that ASSASIN’s XBar interconnect
architecture achieves robust performance, thereby enabling
flexible, independent FTL layout mananagement. Benefits
compared to channel-local proposals (as in Figure 7) can be
as large as 3-8x.

F. Clock-speed benefits and adjusted performance

To assess the clock-speed benefits of ASSASIN’s streaming
architecture, we implement the ISA extension described in
Section V-B, using SystemVerilog and with SAED14nm [52].
The implemented streambuffer (for AssasinSb) provides
1B-64B access to the stream heads in the ’MEM’ pipeline
stage of each ASSASIN core. As a comparison, scratchpads
(for AssasinSp) with varied widths (8B for a scalar core,
64B for SIMD extensions) and sizes are implemented.

Figure 22: Relative speedup, relative power efficiency and
relative area efficiency

Our results (see Figure 20) show AssasinSb’s streambuffer
achieves 0.5ns per cycle even with a wide, i.e. 64B,
interface provisioned for SIMD. A small and prefetched
FIFO, built upon restricted streaming semantics (head-only)
of ‘StreamLoad’ and ‘StreamStore’ instructions, on top of
streambuffer with coarse-grained (128B aligned) accesses is
the key to this high speed.

In contrast, the scratchpad implementations are
significantly slower because they require random access
(large MUXes / access trees). At 64KB, the scratchpad even
with a narrow 8B interface, requires 2 cycles for each access
in a 1GHz core. Thus, AssasinSp where most accesses are
served by the scratchpads would take performance penalty.

We consider these results in the context of a RISC-V core,
with a classical five-stage pipeline (IF, DE/RR, EX, MEM,
WB). In this design, the prefetch FIFO for the streambuffer
is added where the dcache access would occur. Substituting
dcache to much faster streambuffer allows the clock period
to be reduced by 11% (the critical path shifts to ‘IF‘). On the
other hand, scratchpads would have to be timed for 2-cycle
accesses, and without any cycle time benefits.

Finally, we adjust the performance based on above
findings, as shown in Figure 21. Overall, AssasinSb’s
throughput improves to 1.5x-2.4x (from 1.4-2.1x) over
Baseline, resulting from the cycle time reduction. AssasinSp,
with one additional cycle needed for scratchpads’ accesses,
degrades to only 1.1x-1.4 (from 1.3 to 2x). In short, on
top of the DRAM bypassing feature, AssasinSb’s streaming
memory architecture and instructions delivers a further 1.5x
increase in performance.

G. Power and area efficiency

We evaluate the cost of the in-SSD computing engines
and their memory hierarchy in terms of power and silicon
area of different configurations. Synopsys design compiler
and 14nm SAED technology library [52] are used to evaluate
the costs of logic. The in-order RISC-V cores we use in
baseline and ASSASIN (i.e. AssasinSb variation) are based on
ibex [44]. For UDP, we evaluate with its SystemVerilog-based
ASIC implementation. And Cacti [26] is used for caches,
streambuffers and scratchpads.

Table V: Power and silicon area

Ibex core UDP core 32KB 8way $ 256KB 16way $ 64KB SRAM Crossbar Baseline UDP ASSASIN
Power(mw) 0.241 1.210 0.379 1.136 0.145 0.439 14.048 14.333 12.625
Area(mmˆ2) 0.039 0.059 0.044 0.282 0.030 0.005 2.923 1.444 1.625

The power and silicon area costs for subcomponents and
three evaluated configurations are summarized in Table V.
One thing worth pointing out is that a L1 cache or
similar-size SRAM are at the same order of magnitude
with the compute logic of a core in area and power. This
shows the significance of memory hierarchy innovation as
pursued by ASSASIN. The speedup over baseline, relative
power efficiency (speedup per unit power) and relative area
efficiency (speedup per unit area) of each configuration are
plotted in Figure 22. ASSASIN (i.e. AssasinSb) achieves
2.0x and 3.2x higher power and area efficiency comparing
to Baseline through its streambuffer and scratchpad based
memory hierarchy and streaming instruction-set extension.
And ASSASIN(i.e. AssasinSb) with general-purpose RISCV
cores also outperforms a UDP accelerator which employs an
exotic customized ISA for unstructured data processing.

VII. RELATED WORK

Pioneering work includes “Active Storage” in the
1990s [18], [19] that focused on rotating hard disks in
a single system, not the modern context of shared cloud
storage services with high-performance flash SSDs. More
recent efforts study computational storage in SSD systems.
Some propose general [11], [22]–[24] or application-specific
(i.e. data analytics) [8], [13], [15] software architecture
on top of general-purpose hardware architectures as shown
in Figure 4. Others propose application-specific hardware
and associated software architectures for deduplication [28],
[29], key-value storage [10], [14], deep learning [30], [37],
graph analytics [31], [32], and data analytics [7], [9],
[34] in computational SSDs. Such studies showcase the
benefits of offloading (comparing to non-offloading) or
application-specific hardware customization, but give little
insight as what computation structures/properties enables
system efficiency when employing computational SSD and
how to build general-purpose hardware architecture support
(with associated software architecture adaptations) based on
these properties, which is the essence of our ASSASIN study.

General-purpose hardware architecture for
computational SSD. QuerySSD [35] pioneered the
database-oriented function offloads and assessed the
speedups and energy benefits. ActiveFlash [15] showcases
similar computational SSD potential but for data reduction
functions from scientific computing workloads. Biscuit [13]
advances the art with a flow-based programming model for
computational SSD offload. Summarizer [11] materializes
the system software architecture design including a detailed
NVMe command interface. YourSQL [8] provides richer

software operator support to enable the offload of all TPC-H
queries. BlockIF [23] argues for a software architecture
for computational storage that conforms to traditional
block-oriented storage interface for increased adoption.
IceClave [20] proposes a low-overhead trusted execution
environment for in-SSD computations and advances on the
security front.

These software and system architecture advancement
are all based on the general-purpose hardware architecture
for computational SSDs where compute engines are
embedded-class general purpose cores computing on top of
the conventional cache-DRAM memory hierarchy, as depicted
in Figure 4, and thus amenable to the in-SSD memory
wall. ASSASIN builds on top of these software architecture
innovations in terms of NVMe command adaption and
block-interface conformance but advances the hardware
architecture with efficient flash data stream handling and
addresses the in-SSD memory wall.

Application-specific hardware architectures in
computational SSD. DedupInSSD [29] proposes hardware
hash acceleration for in-SSD deduplication and showcase
the SSD write latency reduction and lifespan improvement.
CIDR [28] proposes more-tailed scalable hardware
architecture for deduplication which utilizes additional
scratchpads for signature management and integrates
compress engines. LightStore [10] augments the general
purpose architecture with a hardware network module to
expose a scalable key-value storage onto the datacenter
network. Caribou [14] further maps the flash management
into hardware modules of cuckoo hash and slab allocation
manager and also supports hardware accelerated in-SSD
processing primitives like select and compression. GList [31]
proposes to integrate hardware sampling unit and a PE
array in the SSD board for graph learning workloads to
enjoy internal excessive storage bandwidth. GrafBoost [32]
employs a sort-reduce accelerator in storage for vertex-centric
graph processing. Deepstore [30] integrates systolic arrays
at SSD, channel and chip-level for accelerated neural
network inference. Thrifty [37] proposes chip-level binary
compute accelerator and SSD-level training accelerator for
hyper-dimension compute training.

Despite employing application-specific hardware
architecture, in all above work except DeepStore and Thrifty,
compute engines source flash data via SSD DRAM, thus
amenable to SSD DRAM bottleneck. And the employment
of hardware acceleration modules actually further increases
the bandwidth requirements of SSD DRAM, as discussed
in Section VI-B. Although channel and chip-level compute

engine integration employed by Deepstore and Thrifty
has the potential of addressing the SSD memory wall, it
further requires application-specific control on data (SSD
page) layout for parallelism exploitation. This is fine for
neural network applications featuring regularly-shaped
tensors which can be easily split into the flash array, but a
deal breaker for general workloads with diverse basic unit
sizes. ASSASIN, through pooling compute elements at the
SSD-level, supports different basic unit sizes by piecing
a unit form pages across channels and dies. ASSASIN
addresses the memory wall while leaving the flash translation
layer and the SSD interface unchanged.

FPGA-based hardware architecture for computational
SSD. There is a middle ground of computational SSDs
where an FPGA chip is integrated into the SSD board
and assumes the computation responsibility [53]. This
allows the storage vendor to either support more flexible
and fast iterations through hardware reconfiguration or
shift the responsibility of architecting the compute engines
including both general-purpose or application-specific ones
in computational SSDs to the customer, but at the cost of
both increased power and silicon area compared with a fixed
hardware architecture, and ease of use for requiring hardware
expertises for reconfiguring the FPGA.

Both Insider [24] and Access [22] try to address the
ease-of-use aspects by providing system software architecture
support of file system filter [24] or pipe [22] abstractions for
the FPGA computing kernels to enable easy system pipelines
and embracing high-level synthesis for developing these
kernels. However, because the SSD FPGA still fetches the
data from SSD DRAM or even requires data to be staged in
an additional FPGA DRAM [53], the in-SSD memory wall is
left unaddressed. The workload and architecture knowledge
distilled in ASSASIN is transferable to the FPGA-based
architectures for computational SSDs.

Disaggregated Storage. Disaggregated storage is a
different approach than computational storage. It has the
advantage of separate management and scaling of compute
and storage, thus allowing compute to scale out and catch up
with continuously improving flash bandwidth. Good examples
of disaggregated storage include JBOF with NVMe-oF [54]
and Amazon EBS [55]. However, comparing to computational
storage, it doesn’t offer the ability of matching more effective
storage bandwidth to a single compute unit (a single point
of consistency), and requires higher interconnect bandwidths
and also puts high burdens of packets and data processing
on the compute processors.

A related trend is Open-channel SSD [56] and Zoned
Namespace SSD [57] that enable better control of placement
and performance by externalizing management. But they
do not address the system architecture aspects (driving
more storage bandwidths, reducing interconnect bandwidth
requirement, offloading packet and data processing) which
computational storage strives for.

VIII. SUMMARY AND FUTURE WORK

The memory wall problem in the computational storage
emerges when compute in storage tries to match the flash
bandwidth. To characterize the problem clearly, we studied
a broad range of research proposals for domain-specific
properties that allow architecture innovations. Key insight
arises that computational storage functions all feature
implementations with streaming accesses to storage data
and random accesses to function states of limited size.

Inspired by this insight, we designed ASSASIN, which
allows inline stream computing on flash data streams through
a hybrid high-bandwidth memory hierarchy composed of
stream buffers and scratchpad and a streaming instruction-set
extension. ASSASIN achieves 1.5x - 2.4x speedup on
functions offloaded in storage which translates to 1.1x - 1.5x
overall end-to-end speedup, compared to the state-of-the-art
general-purpose computational SSD architecture.

There are a number of interesting directions for future
work. Further distilling workload properties to shape an
efficient compute ISA extension for computational SSDs is
intriguing, as ASSASIN addresses the memory-intensive
part. Since streaming workloads are also prevalent in
general-purpose computing (i.e. servers in the cloud)
environment, ‘backporting’ streaming architecture extension
for computational storage to ‘upstream’ is also interesting.

ACKNOWLEDGMENT

We thank reviewers for insights that improved the paper
significantly. Insights on SSD’s internal architecture from
Hui Zhang and Pratik Mishra (then of Samsung MSL) are
also much appreciated. This work is supported by a grant
from Samsung MSL, NSF Award CNS-1909364, and the
CERES Center for Unstoppable Computing.

REFERENCES

[1] “Samsung Sixth-Generation V-NAND SSDs,” Samsung News
Room.

[2] “Samsung PM9A3 Data Center SSD,” https://www.samsung.
com/semiconductor/ssd/pm9a3/.

[3] “Samsung 980 Pro SSD,” https://s3.ap-northeast-
2.amazonaws.com/global.semi.static/Samsung-NVMe-
SSD-980-PRO-Data-Sheet Rev.2.1.pdf.

[4] J. Do, S. Sengupta, and S. Swanson, “Programmable solid-state
storage in future cloud datacenters,” Communications of the
ACM, vol. 62, no. 6, pp. 54–62, 2019.

[5] Y. Kang, R. Pitchumani, P. Mishra, Y.-s. Kee, F. Londono,
S. Oh, J. Lee, and D. D. Lee, “Towards building a
high-performance, scale-in key-value storage system,” in
Proceedings of the 12th ACM International Conference on
Systems and Storage. ACM, 2019, pp. 144–154.

https://www.samsung.com/semiconductor/ssd/pm9a3/
https://www.samsung.com/semiconductor/ssd/pm9a3/
https://s3.ap-northeast-2.amazonaws.com/global.semi.static/Samsung-NVMe-SSD-980-PRO-Data-Sheet_Rev.2.1.pdf
https://s3.ap-northeast-2.amazonaws.com/global.semi.static/Samsung-NVMe-SSD-980-PRO-Data-Sheet_Rev.2.1.pdf
https://s3.ap-northeast-2.amazonaws.com/global.semi.static/Samsung-NVMe-SSD-980-PRO-Data-Sheet_Rev.2.1.pdf

[6] A. Verbitski, A. Gupta, D. Saha, M. Brahmadesam, K. Gupta,
R. Mittal, S. Krishnamurthy, S. Maurice, T. Kharatishvili,
and X. Bao, “Amazon aurora: Design considerations for high
throughput cloud-native relational databases,” in Proceedings
of the 2017 ACM International Conference on Management
of Data. ACM, 2017, pp. 1041–1052.

[7] L. Woods, Z. István, and G. Alonso, “Ibex: an intelligent
storage engine with support for advanced sql offloading,”
Proceedings of the VLDB Endowment, vol. 7, no. 11, pp.
963–974, 2014.

[8] I. Jo, D.-H. Bae, A. S. Yoon, J.-U. Kang, S. Cho, D. D. Lee,
and J. Jeong, “Yoursql: a high-performance database system
leveraging in-storage computing,” Proceedings of the VLDB
Endowment, vol. 9, no. 12, pp. 924–935, 2016.

[9] C. Zou, H. Zhang, A. A. Chien, and Y.-S. Ki, “Psacs:
Highly-parallel shuffle accelerator on computational storage.”
in ICCD, 2021, pp. 480–487.

[10] C. Chung, J. Koo, J. Im, S. Lee et al., “Lightstore:
Software-defined network-attached key-value drives,” in
Proceedings of the Twenty-Fourth International Conference
on Architectural Support for Programming Languages and
Operating Systems. ACM, 2019, pp. 939–953.

[11] G. Koo, K. K. Matam, H. Narra, J. Li, H.-W. Tseng,
S. Swanson, M. Annavaram et al., “Summarizer: trading
communication with computing near storage,” in Proceedings
of the 50th Annual IEEE/ACM International Symposium on
Microarchitecture. ACM, 2017, pp. 219–231.

[12] C. Zou, A. A. Chien, R. Gardner, and I. Vukotic,
“Computational storage to increase the analysis capability of
tier-2 hep data sites,” in 2021 IEEE International Conference
on Cluster Computing (CLUSTER). IEEE, 2021, pp. 803–804.

[13] B. Gu, A. S. Yoon, D.-H. Bae, I. Jo, J. Lee, J. Yoon, J.-U.
Kang, M. Kwon, C. Yoon, S. Cho et al., “Biscuit: A framework
for near-data processing of big data workloads,” in ACM
SIGARCH Computer Architecture News, vol. 44. IEEE Press,
2016, pp. 153–165.

[14] Z. István, D. Sidler, and G. Alonso, “Caribou: intelligent
distributed storage,” Proceedings of the VLDB Endowment,
vol. 10, no. 11, pp. 1202–1213, 2017.

[15] D. Tiwari, S. Boboila, S. Vazhkudai, Y. Kim, X. Ma,
P. Desnoyers, and Y. Solihin, “Active flash: Towards
energy-efficient, in-situ data analytics on extreme-scale
machines,” in Presented as part of the 11th USENIX
Conference on File and Storage Technologies (FAST 13), 2013,
pp. 119–132.

[16] H. Li, M. Hao, S. Novakovic, V. Gogte, S. Govindan,
D. R. Ports, I. Zhang, R. Bianchini, H. S. Gunawi, and
A. Badam, “Leapio: Efficient and portable virtual nvme storage
on arm socs,” in Proceedings of the Twenty-Fifth International
Conference on Architectural Support for Programming
Languages and Operating Systems, 2020, pp. 591–605.

[17] “What is computational storage,” https://www.snia.org/
education/what-is-computational-storage.

[18] E. Riedel, G. Gibson, and C. Faloutsos, “Active storage
for large-scale data mining and multimedia applications,” in
Proceedings of 24th Conference on Very Large Databases.
ACM, 1998, pp. 62–73.

[19] A. Acharya, M. Uysal, and J. Saltz, “Active disks:
Programming model, algorithms and evaluation,” in
Proceedings of the Eighth International Conference on
Architectural Support for Programming Languages and
Operating Systems, ser. ASPLOS VIII. ACM, 1998, pp.
81–91.

[20] L. Kang, Y. Xue, W. Jia, X. Wang, J. Kim, C. Youn,
M. J. Kang, H. J. Lim, B. Jacob, and J. Huang, “Iceclave:
A trusted execution environment for in-storage computing,”
in Proceedings of the 54th International Symposium on
Microarchitecture. ACM, 2021.

[21] “ONFI Specifications,” https://www.onfi.org/specifications.

[22] R. Schmid, M. Plauth, L. Wenzel, F. Eberhardt, and A. Polze,
“Accessible near-storage computing with fpgas,” in Proceedings
of the Fifteenth European Conference on Computer Systems,
2020, pp. 1–12.

[23] I. F. Adams, J. Keys, and M. P. Mesnier, “Respecting the
block interface–computational storage using virtual objects,”
in 11th {USENIX} Workshop on Hot Topics in Storage and
File Systems (HotStorage 19), 2019.

[24] Z. Ruan, T. He, and J. Cong, “Insider: Designing in-storage
computing system for emerging high-performance drive,” in
2019 USENIX Annual Technical Conference (USENIX ATC
19), 2019, pp. 379–394.

[25] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi,
A. Basu, J. Hestness, D. R. Hower, T. Krishna, S. Sardashti
et al., “The gem5 simulator,” ACM SIGARCH computer
architecture news, vol. 39, no. 2, pp. 1–7, 2011.

[26] R. Balasubramonian, A. B. Kahng, N. Muralimanohar,
A. Shafiee, and V. Srinivas, “Cacti 7: New tools for
interconnect exploration in innovative off-chip memories,”
ACM Transactions on Architecture and Code Optimization
(TACO), vol. 14, no. 2, pp. 1–25, 2017.

[27] C. Huang, H. Simitci, Y. Xu, A. Ogus, B. Calder, P. Gopalan,
J. Li, and S. Yekhanin, “Erasure coding in windows azure
storage,” in Presented as part of the 2012 USENIX Annual
Technical Conference (USENIX ATC 12), 2012, pp. 15–26.

[28] M. Ajdari, P. Park, J. Kim, D. Kwon, and J. Kim,
“Cidr: A cost-effective in-line data reduction system
for terabit-per-second scale ssd arrays,” in 2019 IEEE
International Symposium on High Performance Computer
Architecture (HPCA). IEEE, 2019, pp. 28–41.

[29] J. Kim, C. Lee, S. Lee, I. Son, J. Choi, S. Yoon, H.-u. Lee,
S. Kang, Y. Won, and J. Cha, “Deduplication in ssds: Model
and quantitative analysis,” in 012 IEEE 28th Symposium on
Mass Storage Systems and Technologies (MSST). IEEE, 2012,
pp. 1–12.

https://www.snia.org/education/what-is-computational-storage
https://www.snia.org/education/what-is-computational-storage
https://www.onfi.org/specifications

[30] V. S. Mailthody, Z. Qureshi, W. Liang, Z. Feng, S. G. d.
Gonzalo, Y. Li, H. Franke, J. Xiong, J. Huang, and W.-m. Hwu,
“Deepstore: In-storage acceleration for intelligent queries,”
in Proceedings of the 52th International Symposium on
Microarchitecture. ACM, 2019.

[31] C. Li, Y. Wang, C. Liu, S. Liang, H. Li, and X. Li, “{GLIST}:
Towards {In-Storage} graph learning,” in 2021 USENIX
Annual Technical Conference (USENIX ATC 21), 2021, pp.
225–238.

[32] S.-W. Jun, A. Wright, S. Zhang, S. Xu et al., “Grafboost:
Using accelerated flash storage for external graph analytics,”
in 2018 ACM/IEEE 45th Annual International Symposium on
Computer Architecture (ISCA). IEEE, 2018, pp. 411–424.

[33] D. R. Horn, K. Elkabany, C. Lesniewski-Lass, and K. Winstein,
“The design, implementation, and deployment of a system to
transparently compress hundreds of petabytes of image files
for a file-storage service,” in 14th USENIX Symposium on
Networked Systems Design and Implementation (NSDI 17),
2017, pp. 1–15.

[34] S. Kang, J. An, J. Kim, and S.-W. Jun, “Mithrilog: Near-storage
accelerator for high-performance log analytics,” in Proceedings
of the 54th International Symposium on Microarchitecture.
ACM, 2021.

[35] J. Do, Y.-S. Kee, J. M. Patel, C. Park, K. Park, and D. J. DeWitt,
“Query processing on smart ssds: Opportunities and challenges,”
in Proceedings of the 2013 ACM SIGMOD International
Conference on Management of Data, 2013, pp. 1221–1230.

[36] J. LeFevre and N. Watkins, “Skyhook: Programmable storage
for databases.” Boston, MA: USENIX Association, Feb.
2019.

[37] S. Gupta, J. Morris, M. Imani, R. Ramkumar, J. Yu, A. Tiwari,
B. Aksanli, and T. Š. Rosing, “Thrifty: Training with
hyperdimensional computing across flash hierarchy,” in 2020
IEEE/ACM International Conference On Computer Aided
Design (ICCAD). IEEE, 2020, pp. 1–9.

[38] K. K. Matam, G. Koo, H. Zha, H.-W. Tseng, and
M. Annavaram, “Graphssd: graph semantics aware ssd,” in
Proceedings of the 46th international symposium on computer
architecture, 2019, pp. 116–128.

[39] N. Mansouri Ghiasi, J. Park, H. Mustafa, J. Kim,
A. Olgun, A. Gollwitzer, D. Senol Cali, C. Firtina, H. Mao,
N. Almadhoun Alserr et al., “Genstore: a high-performance
in-storage processing system for genome sequence analysis,”
in Proceedings of the 27th ACM International Conference
on Architectural Support for Programming Languages and
Operating Systems, 2022, pp. 635–654.

[40] A. Waterman, Y. Lee, D. A. Patterson, and K. Asanovic,
“The risc-v instruction set manual, volume i: Base
user-level isa,” EECS Department, UC Berkeley, Tech. Rep.
UCB/EECS-2011-62, vol. 116, 2011.

[42] Y. Fang, C. Zou, A. J. Elmore, and A. A. Chien,
“Udp: a programmable accelerator for extract-transform-load
workloads and more,” in 2017 50th Annual IEEE/ACM
International Symposium on Microarchitecture (MICRO).
IEEE, 2017.

[41] N. Talati, K. May, A. Behroozi, Y. Yang, K. Kaszyk,
C. Vasiladiotis, T. Verma, L. Li, B. Nguyen, J. Sun et al.,
“Prodigy: Improving the memory latency of data-indirect
irregular workloads using hardware-software co-design,” in
2021 IEEE International Symposium on High-Performance
Computer Architecture (HPCA). IEEE, 2021, pp. 654–667.

[43] M. Grannaes, M. Jahre, and L. Natvig, “Storage efficient
hardware prefetching using delta-correlating prediction tables,”
Journal of Instruction-Level Parallelism, vol. 13, pp. 1–16,
2011.

[44] P. D. Schiavone, F. Conti, D. Rossi, M. Gautschi, A. Pullini,
E. Flamand, and L. Benini, “Slow and steady wins the
race? a comparison of ultra-low-power risc-v cores for
internet-of-things applications,” in 2017 27th International
Symposium on Power and Timing Modeling, Optimization
and Simulation (PATMOS). IEEE, 2017, pp. 1–8. [Online].
Available: https://github.com/lowRISC/ibex

[45] “RISC-V GNU Compiler Toolchain,” https://github.com/riscv/
riscv-gnu-toolchain.

[46] A. Tavakkol, J. Gómez-Luna, M. Sadrosadati, S. Ghose, and
O. Mutlu, “Mqsim: A framework for enabling realistic studies
of modern multi-queue {SSD} devices,” in 16th {USENIX}
Conference on File and Storage Technologies ({FAST} 18),
2018, pp. 49–66.

[47] “Extended Gem5 for ASSASIN evaluations,” https://github.
com/compstorassasin/gem5.

[48] “Extended MQSim for ASSASIN evaluations,” https://github.
com/compstorassasin/MQSim.

[49] “TPC-H dataset,” http://www.tpc.org/tpch/.

[50] “SparkSQL TPC-H implementaion with Computational
Storage Offload,” https://github.com/compstorassasin/
compstor.

[51] “Introducing Apache Spark Data Sources API V2,” https:
//databricks.com/session/apache-spark-data-source-v2.

[52] “Synopsys teaching resources,” https://www.synopsys.com/
community/university-program/teaching-resources.html.

[53] J. Do, Y.-S. Kee, J. M. Patel, C. Park, K. Park, and D. J. DeWitt,
“Query processing on smart ssds: opportunities and challenges,”
in Proceedings of the 2013 ACM SIGMOD International
Conference on Management of Data. ACM, 2013, pp.
1221–1230.

[54] “NVMe-OF JBOF,” https://nvmexpress.org/wp-
content/uploads/NVMe-202-1-Part-1-JBOFs Final.pdf.

[55] “Amazon EBS: SSD,” https://docs.aws.amazon.com/AWSEC2/
latest/UserGuide/ebs-volume-types.html.

[56] M. Bjørling, J. Gonzalez, and P. Bonnet, “Lightnvm: The
linux open-channel {SSD} subsystem,” in 15th {USENIX}
Conference on File and Storage Technologies ({FAST} 17),
2017, pp. 359–374.

[57] M. Bjørling, A. Aghayev, H. Holmberg, A. Ramesh, D. Moal,
G. Ganger, and G. Amvrosiadis, “Zns: Avoiding the block
interface tax for flash-based ssds,” in Proceedings of the 2021
USENIX Annual Technical Conference (USENIX ATC’21),
2021.

https://github.com/lowRISC/ibex
https://github.com/riscv/riscv-gnu-toolchain
https://github.com/riscv/riscv-gnu-toolchain
https://github.com/compstorassasin/gem5
https://github.com/compstorassasin/gem5
https://github.com/compstorassasin/MQSim
https://github.com/compstorassasin/MQSim
http://www.tpc.org/tpch/
https://github.com/compstorassasin/compstor
https://github.com/compstorassasin/compstor
https://databricks.com/session/apache-spark-data-source-v2
https://databricks.com/session/apache-spark-data-source-v2
https://www.synopsys.com/community/university-program/teaching-resources.html
https://www.synopsys.com/community/university-program/teaching-resources.html
https://nvmexpress.org/wp-content/uploads/NVMe-202-1-Part-1-JBOFs_Final.pdf
https://nvmexpress.org/wp-content/uploads/NVMe-202-1-Part-1-JBOFs_Final.pdf
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ebs-volume-types.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ebs-volume-types.html

	Introduction
	Background
	Solid-state drive architecture
	NAND flash

	Motivation and the Problem
	A Motivating Example
	The Problem

	Understanding the workload
	Computational storage offload spectrum
	Function structure and memory access requirements

	ASSASIN Design
	ASSASIN SSD: Stream computing between flash controllers and DRAM
	ASSASIN core: Efficient Streaming
	Flexible interconnect: scalable compute
	ASSASIN Programming Model

	Evaluation
	Methodology
	Single-function offload
	Database function pipeline offload
	Performance scalability
	Sensitivity to flash array data layout skew
	Clock-speed benefits and adjusted performance
	Power and area efficiency

	Related work
	Summary and future work
	References

